Skip to main content
Log in

Revisiting topology optimization with buckling constraints

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We review some features of topology optimization with a lower bound on the critical load factor, as computed by linearized buckling analysis. The change of the optimized design, the competition between stiffness and stability requirements and the activation of several buckling modes, depending on the value of such lower bound, are studied. We also discuss some specific issues which are of particular interest for this problem, as the use of non-conforming finite elements for the analysis, the use of inconsistent sensitivity that may lead to wrong signs of sensitivities and the replacement of the single eigenvalue constraints with an aggregated measure. We discuss the influence of these practices on the optimization result, giving some recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga–voxel computational morphogenesis for structural design. Nature 550(7674):84–86

    Article  Google Scholar 

  • Achtziger W (1999) Local stability of trusses in the context of topology optimization, part I: exact modelling. Struct Optim 17:235–246

    Google Scholar 

  • Armand JL, Lodier B (1978) Optimal design of bending elements. Int J Numer Methods Eng 13:373–384

    Article  MATH  Google Scholar 

  • Bathe KJ, Dvorkin E (1983) On the automatic solution of nonlinear finite element equations. Comput Struct 17(5–6):871–879

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Berke L (1970) An efficient approach to the minimum weight design of deflection limited structures. AFFDDL-TM-70-4

  • Bian X, Feng Y (2017) Large–scale buckling–constrained topology optimization based on assembly–free finite element analysis. Adv Mech Eng 9(9):1–12

    Article  Google Scholar 

  • Bochenek B, Tajs-Zieliṅska K (2015) Minimal compliance topologies for maximal buckling load of columns. Struct Multidiscip Optim 51(5):1149–1157

    Article  MathSciNet  Google Scholar 

  • Brantman R (1977) On the use of linearized instability analyses to investigate the buckling of nonsymmetrical systems. Acta Mech 26(1):75–89

    Article  MathSciNet  Google Scholar 

  • Bruyneel M, Colson B, Remouchamps A (2008) Discussion on some convergence problems in buckling optimisation. Struct Multidiscip Optim 35(2):181–186

    Article  Google Scholar 

  • Chen X, Qi H, Qi L, Teo K L (2004) Smooth convex approximation to the maximum eigenvalue function. J Glob Optim 30(2):253–270

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng G, Xu L (2016) Two–scale topology design optimization of stiffened or porous plate subject to out–of–plane buckling constraint. Struct Multidiscip Optim 54(5):1283–1296

    Article  MathSciNet  Google Scholar 

  • Chin TW, Kennedy GJ (2016) Large–scale compliance–minimization and buckling topology optimization of the undeformed common research model wing. In: AIAA SciTechForum

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Cox S, McCarthy C (1998) The shape of the tallest column. SIAM J Math Anal 29:547–554

    Article  MathSciNet  MATH  Google Scholar 

  • Cox S, Overton M (1992) On the optimal design of columns against buckling. SIAM J Math Anal 23:287–325

    Article  MathSciNet  MATH  Google Scholar 

  • de Borst R, Crisfield MA, Remmers JJC, Verhoosel CV (2012) Non-linear finite element analysis of solids and structures, 2nd edn. Wiley

  • Dunning PD, Ovtchinnikov E, Scott J, Kim A (2016) Level–set topology optimization with many linear buckling constraints using and efficient and robust eigensolver. International Journal for Numerical Methods, in Engineering

  • Duysinx P, Sigmund O (1998) New developments in handling optimal stress constraints in optimal material distributions, pp 1501–1509

  • Ferrari F, Lazarov BS, Sigmund O (2018) Eigenvalue topology optimization via efficient multilevel solution of the Frequency Response. Int J Numer Methods Eng 115(7):872–892

    Article  MathSciNet  Google Scholar 

  • Folgado J, Rodrigues H (1998) Structural optimization with a non-smooth buckling load criterion. Control Cybern 27:235–253

    MathSciNet  MATH  Google Scholar 

  • Frauenthal JC (1972) Constrained optimal design of circular plates against buckling. J Struct Mech 1:159–186

    Article  Google Scholar 

  • Fröier M, Nilsson L, Samuelsson A (1974) The rectangular plane stress element by Turner, Pian and Wilson. Int J Numer Methods Eng 8:433–437

    Article  Google Scholar 

  • Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152

    Article  Google Scholar 

  • Gao X, Li L, Ma H (2017) An adaptive continuation method for topology optimization of continuum structures considering buckling constraints. Int J Appl Math 9(7):24

    Google Scholar 

  • Gravesen J, Evgrafov A, Nguyen DM (2011) On the sensitivities of multiple eigenvalues. Struct Multidiscip Optim 44(4):583–587

    Article  MathSciNet  MATH  Google Scholar 

  • Haftka R, Gurdal Z (2012) Elements of structural optimization. Solid mechanics and its applications. Springer, Netherlands

    Google Scholar 

  • Haftka R, Prasad B (1981) Optimum structural with plate bending elements – a survey. AIAA J 19:517–522

    Article  MATH  Google Scholar 

  • Hall SK, Cameron GE, Grierson DE (1988) Least–weight design of steel frameframe accounting for P −Δ effects. Struct Eng ASCE 115(6):1463–1475

    Article  Google Scholar 

  • Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3):203–226

    Article  MathSciNet  MATH  Google Scholar 

  • Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy GJ, Hicken JE (2015) Improved constraint–aggregation methods. Comput Methods Appl Mech Eng 289(Supplement C):332–354

    Article  MathSciNet  MATH  Google Scholar 

  • Kerr ADT, Soifer MT (1968) The linearization of the prebuckling state and its effect on the determined instability loads. J Appl Mech 36:775–783

  • Khot NS, Venkayya VB, Berke L (1976) Optimum structural design with stability constraints. Int J Numer Methods Eng 10(5):1097–1114

    Article  MATH  Google Scholar 

  • Kirmser PG, Hu KK (1995) The shape of the ideal column reconsidered. Math Intell 15(3):62–67

    Article  MathSciNet  MATH  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. IFAC Proceedings 12(7):113–117. iFAC Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland, 29-31 August

    Article  MATH  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

  • Lee E, James K, Martins J (2012) Stress–constrained topology optimization with design dependent loads. Struct Multidiscip Optim 46(5):647–661

    Article  MathSciNet  MATH  Google Scholar 

  • Lee K, Ahn K, Yoo J (2016) A novel p–norm correction method for lightweight topology optimization under maximum stress constraints. Comput Struct 171(Supplement C):18–30

    Article  Google Scholar 

  • Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap–through problems. Struct Multidiscip Optim 47:409–421

    Article  MathSciNet  MATH  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi–material composite shell structures. Compos Struct 91(2):158– 167

    Article  MathSciNet  Google Scholar 

  • Manh ND, Evgrafov A, Gersborg AR, Gravesen J (2011) Isogeometric shape optimization of vibrating membranes. Comput Methods Appl Mech Eng 200(13):1343–1353

    Article  MathSciNet  MATH  Google Scholar 

  • Munk DJ, Vio GA, Steven GP (2017) A simple alternative formulation for structural optimisation with dynamic and buckling objectives. Struct Multidiscip Optim 55(3):969–986

    Article  MathSciNet  Google Scholar 

  • Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78

    Article  Google Scholar 

  • Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809– 834

    Article  MathSciNet  MATH  Google Scholar 

  • Ohsaki M, Ikeda K (2007) Stability and optimization of structures: generalized sensitivity analysis. Mechanical Engineering Series. Springer, Berlin

    Book  MATH  Google Scholar 

  • Olhoff N, Rasmussen SH (1977) On single and bimodal optimum buckling loads of clamped columns. Int J Solids Struct 13(7):605–614

    Article  MATH  Google Scholar 

  • Pedersen NL, Pedersen P (2018) Buckling load optimization for 2D continuum models with alternative formulation for buckling load estimation. Struct Multidiscip Optim 58(5):2163–2172

    Article  MathSciNet  Google Scholar 

  • Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336

    Article  Google Scholar 

  • Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20(9):1685– 1695

    Article  MATH  Google Scholar 

  • Poon NMK, Martins JRA (2007) An adaptive approach to contstraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73

    Article  Google Scholar 

  • Rahmatalla S, Swan C (2003) Continuum topology optimization of buckling–sensitive structures. AIAA J 41(6):1180–1189

    Article  Google Scholar 

  • Raspanti CG, Bandoni JA, Biegler LT (2000) New strategies for flexibility analysis and design under uncertainties. Comput Chem Eng 24:2193–2209

    Article  Google Scholar 

  • Reitinger R, Ramm E (1995) Buckling and imperfection sensitivity in the optimization of shell structures. Thin-Walled Struct 23:159–177

    Article  Google Scholar 

  • Rodrigues HC, Guedes JM, Bendsøe MP (1995) Necessary conditions for optimal design of structures with a nonsmooth eigenvalue based criterion. Struct Optim 9:52–56

    Article  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015) Automatic penalty continuation in structural topology optimization. Struct Multidiscip Optim 52:1205–1221

    Article  MathSciNet  Google Scholar 

  • Rozvany G (1996) Difficulties in topology optimization with stress, local buckling and system stability constraints. Struct Optim 11:213–217

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (2007) Morphology–based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401– 424

    Article  Google Scholar 

  • Simitses GJ (1973) Optimal versus the stiffened circular plate. AIAA J 11:1409–1412

    Article  Google Scholar 

  • Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Szyszkowski W, Watson L (1988) Optimization of the buckling load of columns and frames. Eng Struct 10 (4):249–256

    Article  Google Scholar 

  • Thomsen CR, Wang F, Sigmund O (2018) Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis. Comput Methods Appl Mech Eng 339:115–136

    Article  MathSciNet  Google Scholar 

  • Torii AJ, Faria JR (2017) Structural optimization considering smallest magnitude eigenvalues: a smooth approximation. J Braz Soc Mech Sci Eng 39(5):1745–1754

    Article  Google Scholar 

  • Turner MJ, Clough RJ, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aerosol Sci 23:805–823

    MATH  Google Scholar 

  • Verbart A, Langelaar M, van Keulen F (2017) A unified aggregation and relaxation approach for stress–constrained topology optimization. Struct Multidiscip Optim 55:663–679

    Article  MathSciNet  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Wilson EL, Taylor RL, Doherty W, Glaboussi J (1973) Incompatible displacement models, Academic Press, pp 41–57

  • Wu CC, Arora JS (1988) Design sensitivity analysis of non–linear buckling load. Comput Mech 3:129–140

    Article  MATH  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress–based topology optimization. Struct Optim 12(2):98–105

    Article  Google Scholar 

  • Ye HL, Wang WW, Chen N, Sui YK (2016) Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering functions. Acta Mech Sinica 32(4):649–658

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou M (2004) Topology optimization of shell structures with linear buckling responses. In: Iakkis O (ed) WCCM VI in Beijing, China, pp 795–800

  • Zhou M, Sigmund O (2017) On fully stressed design and p–norm measures in structural optimization. Struct Multidiscip Optim 56(731–736)

Download references

Acknowledgements

The current project is supported by the Villum Fonden through the Villum Investigator Project “InnoTop.” The authors are grateful to Prof. Pauli Pedersen for several fruitful discussions on the topic of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ferrari.

Additional information

Responsible Editor: Junji Kato

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Sigmund, O. Revisiting topology optimization with buckling constraints. Struct Multidisc Optim 59, 1401–1415 (2019). https://doi.org/10.1007/s00158-019-02253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02253-3

Keywords

Navigation