Skip to main content
Log in

Combination of topology optimization and Lie derivative-based shape optimization for electro-mechanical design

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a framework for the simultaneous application of shape and topology optimization in electro-mechanical design problems. Whereas the design variables of a shape optimization are the geometrical parameters of the CAD description, the design variables upon which density-based topology optimization acts represent the presence or absence of material at each point of the region where it is applied. These topology optimization design variables, which are called densities, are by essence substantial quantities. This means that they are attached to matter while, on the other hand, shape optimization implies ongoing changes of the model geometry. An appropriate combination of the two representations is therefore necessary to ensure a consistent design space as the joint shape-topology optimization process unfolds. The optimization problems dealt with in this paper are furthermore constrained to verify the governing partial differential equations (PDEs) of a physical model, possibly nonlinear, and discretized by means of, e.g., the finite element method (FEM). Theoretical formulas, based on the Lie derivative, to express the sensitivity of the performance functions of the optimization problem, are derived and validated to be used in gradient-based algorithms. The method is applied to the torque ripple minimization in an interior permanent magnet synchronous machine (PMSM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If the performance function is a pointwise value, the expression of F(τ, ρ, A) will then involve a Dirac function.

References

  • Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. Comptes Rendus Mathematique 334(12):1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Arora JS, Haug EJ (1979) Methods of design sensitivity analysis in structural optimization. AIAA journal 17(9):970–974

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Meth Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Rodrigues HC (1991) Integrated topology and boundary shape optimization of 2-d solids. Comput Methods Appl Mech Eng 87(1):15–34

    Article  MathSciNet  MATH  Google Scholar 

  • Biedinger J, Lemoine D (1997) Shape sensitivity analysis of magnetic forces. IEEE Trans Magn 33(3):2309–2316

    Article  Google Scholar 

  • Bletzinger K-U, Maute K (1997) Towards generalized shape and topology optimization. Eng Optim 29(1-4):201–216

    Article  Google Scholar 

  • Bossavit A (1998) Computational electromagnetism: variational formulations, complementarity, edge elements. Academic Press

  • Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44(3):247–267

    Article  MATH  Google Scholar 

  • Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidiscip Optim 49(3):387–399

    Article  MathSciNet  Google Scholar 

  • Choi KK, Kim N-H (2006) Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media, New York

  • Duboeuf F, Béchet E (2017) Embedded solids of any dimension in the x-fem. Finite Elem Anal Des 130:80–101

    Article  MathSciNet  Google Scholar 

  • Dular P, Geuzaine C, Genon A, Legros W (1999) An evolutive software environment for teaching finite element methods in electromagnetism. IEEE Trans Magn 35(3):1682–1685

    Article  Google Scholar 

  • Emmendoerfer H Jr, Fancello EA (2016) Topology optimization with local stress constraint based on level set evolution via reaction–diffusion. Comput Methods Appl Mech Eng 305:62–88

    Article  MathSciNet  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Fleury C, Schmit LA Jr (1980) Dual methods and approximation concepts in structural synthesis, NASA CR–3226

  • Gangl P, Langer U, Laurain A, Meftahi H, Sturm K (2015) Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J Sci Comput 37(6):B1002–B1025

    Article  MathSciNet  MATH  Google Scholar 

  • Geuzaine C, Remacle J-F (2009) Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani B, Tavakkoli SM, Ghasemnejad H (2013) Simultaneous shape and topology optimization of shell structures. Struct Multidiscip Optim 48(1):221–233

    Article  MathSciNet  MATH  Google Scholar 

  • Henrotte F (2004) Handbook for the computation of electromagnetic forces in a continuous medium. Int Compumag Society Newsletter 24(2):3–9

    Google Scholar 

  • Hermann R, et al (1964) Harley flanders, differential forms with applications to the physical sciences. Bull Am Math Soc 70(4):483–487

    Article  Google Scholar 

  • Hintermüller M, Laurain A (2008) Electrical impedance tomography: from topology to shape. Control Cybern 37(4):913–933

    MathSciNet  MATH  Google Scholar 

  • Hiptmair R, Li J (2013) Shape derivatives in differential forms i: An intrinsic perspective. Annali di Matematica 192(6):1077–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Hiptmair R, Li J (2017) Shape derivatives in differential forms ii: Shape derivatives for scattering problems. SAM Seminar for Applied Mathematics, ETH , Zürich. Research Report

    Google Scholar 

  • Hsu M-H, Hsu Y-L (2005) Interpreting three-dimensional structural topology optimization results. Comput Struct 83(4-5):327–337

    Article  Google Scholar 

  • Hsu Y-L, Hsu M-S, Chen C-T (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049–1058

    Article  Google Scholar 

  • Kalameh HA, Pierard O, Friebel C, Béchet E (2016) Semi-implicit representation of sharp features with level sets. Finite Elem Anal Des 117:31–45

    Article  MathSciNet  Google Scholar 

  • Kuci E, Henrotte F, Duysinx P, Geuzaine C (2017) Design sensitivity analysis for shape optimization based on the Lie derivative. Comput Methods Appl Mech Eng 317:702–722

    Article  MathSciNet  Google Scholar 

  • Kumar A, Gossard D (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118(1):68–74

    Article  Google Scholar 

  • Kwack J, Min S, Hong J-P (2010) Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method. IEEE Trans Magn 46(6):2108–2111

    Article  Google Scholar 

  • Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von mises stress. Struct Multidiscip Optim 55(5):1541–1557

    Article  MathSciNet  Google Scholar 

  • Misztal MK, Erleben K, Bargteil A, Fursund J, Christensen BB, Bærentzen JA, Bridson R (2014) Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Trans Vis Comput Graph 20(1):4–16

    Article  Google Scholar 

  • Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Meth Appl Mech Eng 192(7):803–829

    Article  MathSciNet  MATH  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1991) On cad-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1-3):259–279

    Article  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Park I-H, Coulomb J-L, Hahn S-Y (1993) Implementation of continuum sensitivity analysis with existing finite element code. IEEE Trans Magn 29(2):1787–1790

    Article  Google Scholar 

  • Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32(2):165–193

    Article  Google Scholar 

  • Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21(2):90–108

    Article  MathSciNet  Google Scholar 

  • Sadowski N, Lefevre Y, Lajoie-Mazenc M, Cros J (1992) Finite element torque calculation in electrical machines while considering the movement. IEEE Trans Magn 28(2):1410–1413. https://doi.org/10.1109/20123957

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sokolowski J, Zochowski A (2003) Optimality conditions for simultaneous topology and shape optimization. SIAM J Control Optim 42(4):1198–1221

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zolesio J-P (1992) Introduction to shape optimization. In: Introduction to Shape Optimization, Springer, pp 5–12

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Tang P-S, Chang K-H (2001) Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 22(1):65–82

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Otomori M, Yamada T, Izui K, Nishiwaki S, Pironneau O (2016) Shape and topology optimization based on the convected level set method. Struct Multidiscip Optim 54(3):659–672

    Article  MathSciNet  Google Scholar 

  • Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192

    Article  Google Scholar 

  • Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using xfem and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. J Mech Des 133(10):104503

    Article  Google Scholar 

  • Zhang W-H, Beckers P, Fleury C (1995) A unified parametric design approach to structural shape optimization. Int J Numer Methods Eng 38(13):2283–2292

    Article  MATH  Google Scholar 

  • Zhu J, Zhang W, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78(6):631–651

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Kuci.

Additional information

Responsible Editor: Anton Evgrafov

Finding information

This work was supported in part by the Walloon Region of Belgium under grant RW-1217703 (WBGreen FEDO) and the Belgian Science Policy under grant IAP P7/02.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuci, E., Henrotte, F., Duysinx, P. et al. Combination of topology optimization and Lie derivative-based shape optimization for electro-mechanical design. Struct Multidisc Optim 59, 1723–1731 (2019). https://doi.org/10.1007/s00158-018-2157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2157-2

Keywords

Navigation