Skip to main content

Advertisement

Log in

Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A novel design concept for buckling-induced mechanical metamaterials for energy absorption is presented. The force-displacement curves of the mechanical metamaterials are analyzed according to the curves of their unit cells, and the energy-absorbing characteristics of mechanical metamaterials are evaluated. Two topology optimization models are proposed. One maximizes the buckling-induced dissipated energy to facilitate the design of metamaterials with high energy absorption and low elastic strain energy. The other maximizes the dissipated energy with a constraint that the mechanical metamaterials should be self-recoverable. An energy interpolation scheme is employed to avoid numerical instabilities in the geometric nonlinear finite element analysis. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess, and sensitivity analysis is performed. The optimized design has a larger amount of buckling-induced dissipated energy than the previously proposed structural prototypes. Moreover, the self-recoverable mechanical metamaterial is successfully designed by topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bochenek B, Tajs-Zielińska K (2015) Minimal compliance topologies for maximal buckling load of columns. Struct Multidiscip Optim 51(5):1149–1157

    Article  MathSciNet  Google Scholar 

  • Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193(36):3973–4000

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237

    Article  MATH  Google Scholar 

  • Bruyneel M, Duysinx P, Fleury C (2002) A family of mma approximations for structural optimization. Struct Multidiscip Optim 24(4):263–276

    Article  Google Scholar 

  • Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004

    Article  Google Scholar 

  • Correa DM, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200

    Article  Google Scholar 

  • Costas M, Díaz J, Romera L, Hernández S (2014) A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int J Mech Sci 88:46–54

    Article  Google Scholar 

  • Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003

    Article  Google Scholar 

  • Dunning PD, Ovtchinnikov E, Scott J, Alicia Kim H (2016) Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver. Int J Numer Methods Eng 107:1029–1053

    Article  MathSciNet  MATH  Google Scholar 

  • Evans AG, He MY, Deshpande VS, Hutchinson JW, Jacobsen AJ, Carter WB (2010) Concepts for enhanced energy absorption using hollow micro-lattices. Int J Impact Eng 37(9):947–959

    Article  Google Scholar 

  • Fang J, Sun G, Na Q, Kim NH, Li Q (2016) On design optimization for structural crashworthiness and its state of the art. Struct Multidiscip Optim 55:1–29

    MathSciNet  Google Scholar 

  • Findeisen C, Hohe J, Kadic M, Gumbsch P (2017) Characteristics of mechanical metamaterials based on buckling elements. J Mech Phys Solids 102:151–164

    Article  MathSciNet  Google Scholar 

  • Forsberg J, Nilsson L (2007) Topology optimization in crashworthiness design. Struct Multidiscip Optim 33(1):1–12

    Article  Google Scholar 

  • Frenzel T, Findeisen C, Kadic M, Gumbsch P, Wegener M (2016) Tailored buckling microlattices as reusable light-weight shock absorbers. Adv Mater 28(28):5865–5870

    Article  Google Scholar 

  • Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152

    Article  Google Scholar 

  • Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A, Briffa J, Grima JN (2015) Hierarchical auxetic mechanical metamaterials. Sci Rep 5:8395

    Article  Google Scholar 

  • Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J, Valdevit L (2016) Multistable shape-reconfigurable architected materials. Adv Mater 28(36):7915–7920

    Article  Google Scholar 

  • He G, Huang X, Hu W, Li G (2016) Topology optimization of periodic structures using beso based on unstructured design points. Struct Multidiscip Optim 53(2):271–275

    Article  MathSciNet  Google Scholar 

  • Hu N, Burgueño R (2015) Buckling-induced smart applications: recent advances and trends. Smart Mater Struct 24(6):063001

    Article  Google Scholar 

  • James KA, Waisman H (2016) Layout design of a bi-stable cardiovascular stent using topology optimization. Comput Methods Appl Mech Eng 305:869–890

    Article  MathSciNet  Google Scholar 

  • Kawamoto A (2009) Stabilization of geometrically nonlinear topology optimization by the levenberg–marquardt method. Struct Multidiscip Optim 37(4):429–433

    Article  Google Scholar 

  • Kiani M, Motoyama K, Rais-Rohani M, Shiozaki H (2014) Joint stiffness analysis and optimization as a mechanism for improving the structural design and performance of a vehicle. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 228(6):689–700

    Article  Google Scholar 

  • Kim JJ, Jang IG (2016) Image resolution enhancement for healthy weight-bearing bones based on topology optimization. J Biomech 49(13):3035–3040

    Article  Google Scholar 

  • Lahuerta RD, Simões ET, Campello EMB, Pimenta PM, Silva ECN (2013) Towards the stabilization of the low density elements in topology optimization with large deformation. Comput Mech 52(4):779–797

    Article  MathSciNet  MATH  Google Scholar 

  • Lee H-A, Park G-J (2012) Topology optimization for structures with nonlinear behavior using the equivalent static loads method. J Mech Des 134(3):031004

    Article  Google Scholar 

  • Lee J-H, Wang L, Kooi S, Boyce MC, Thomas EL (2010) Enhanced energy dissipation in periodic epoxy nanoframes. Nano Lett 10(7):2592–2597

    Article  Google Scholar 

  • Lee J-H, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Adv Mater 24(36):4782–4810

    Article  Google Scholar 

  • Li L, Zhang G, Khandelwal K (2017) Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng 112:737–775

    Article  MathSciNet  Google Scholar 

  • Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Zhang X, Fatikow S (2017) Design and analysis of a multi-notched flexure hinge for compliant mechanisms. Precis Eng 48:292–304

    Article  Google Scholar 

  • Luo Q, Tong L (2015) Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method. Struct Multidiscip Optim 52(1):71–90

    Article  MathSciNet  Google Scholar 

  • Luo Q, Tong L (2016) An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance. Struct Multidiscip Optim 53(4):695–714

    Article  MathSciNet  Google Scholar 

  • Mayer RR, Kikuchi N, Scott RA (1996) Application of topological optimization techniques to structural crashworthiness. Int J Numer Methods Eng 39(8):1383–1403

    Article  MATH  Google Scholar 

  • Mohammadiha O, Beheshti H (2014) Optimization of functionally graded foam-filled conical tubes under axial impact loading. J Mech Sci Technol 28(5):1741–1752

    Article  Google Scholar 

  • Nicolaou ZG, Motter AE (2012) Mechanical metamaterials with negative compressibility transitions. Nat Mater 11(7):608–613

    Article  Google Scholar 

  • Patel NM, Kang B-S, Renaud JE, Tovar A (2009) Crashworthiness design using topology optimization. J Mech Des 131(6):061013

    Article  Google Scholar 

  • Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935

    Article  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015) Automatic penalty continuation in structural topology optimization. Struct Multidiscip Optim 52(6):1205–1221

    Article  MathSciNet  Google Scholar 

  • Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27(29):4296–4301

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Tran AV, Zhang X, Zhu B (2017) The development of a new piezoresistive pressure sensor for low pressure. IEEE Trans Ind Electron PP(99):1–1

    Google Scholar 

  • van Dijk NP, Langelaar M, van Keulen F (2014) Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Struct Multidiscip Optim 50(4):537–560

    Article  MathSciNet  Google Scholar 

  • Wang R, Zhang X (2018) Parameters optimization and experiment of a planar parallel 3-dof nanopositioning system. IEEE Trans Ind Electron 65(3):2388–2397

    Article  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Wang F, Sigmund O, Jensen JS (2014a) Design of materials with prescribed nonlinear properties. J Mech Phys Solids 69:156– 174

    Article  MathSciNet  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O, Jensen JS (2014b) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377

    Article  Google Scholar 

  • Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Ye J, Fang N, Rodriguez N, Weisgraber T et al (2016) Multiscale metallic metamaterials. Nat Mater 15:1100–1106

    Article  Google Scholar 

  • Zhu B, Zhang X, Fatikow S (2015) Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput Methods Appl Mech Eng 283:1214–1239

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1501247 and U1609206). This support is greatly appreciated. Additionally, the authors thank Dr. K. Svanberg at KTH (Stockholm, Sweden) for providing the MMA code for academic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Kurt Maute

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 399 KB)

(AVI 429 KB)

(AVI 451 KB)

(AVI 720 KB)

(AVI 15.7 MB)

(AVI 17.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, X. & Zhu, B. Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Struct Multidisc Optim 58, 1395–1410 (2018). https://doi.org/10.1007/s00158-018-1970-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1970-y

Keywords

Navigation