Skip to main content
Log in

Optimization-based inverse analysis for membership function identification in fuzzy steady-state heat transfer problem

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Based on the optimization design technology and fuzzy uncertainty theory, this paper proposes a novel inverse analysis method for membership function identification in steady-state heat transfer problem with fuzzy modeling parameters. The system subjective uncertainties associated with expert opinions are quantified as fuzzy parameters, which can be converted into interval variables by level-cut strategy. By means of the errors between measured and calculated temperature data, the parameter identification process is executed as a nested-loop optimization model. To avoid the considerable computational cost caused by nested-loop, an interval vertex method is presented to replace the inner-loop for predicting the temperature response bounds. The eventual membership functions of input fuzzy parameters are constructed by using the fuzzy decomposition theorem. Comparing results with traditional Monte Carlo method, a numerical example about 3D air cooling system is provided to verify the feasibility of proposed method for fuzzy parameter identification in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abonyi J (2003) Fuzzy Model Identification for Control. Springer Science Business Media, New York

    Book  MATH  Google Scholar 

  • Agarwal H, Mozumder CK, Renaud JE, Watson LT (2007) An inverse-measure-based unilevel architecture for reliability-based design optimization. Struct Multidiscip O 33(3):217–227

    Article  Google Scholar 

  • Akkaram S, Beeson D, Agarwal H, Wiggs G (2007) Inverse modeling technology for parameter estimation. Struct Multidiscip O 34(2):151–164

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (2013) Convex Models of Uncertainty in Applied Mechanics. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  • Bilal M, Hussain A, Jaffar MA, Choi T, Mirza AM (2014) Estimation and optimization based ill-posed inverse restoration using fuzzy logic. Multimed Tools Appl 69(3):1067–1087

    Article  Google Scholar 

  • Blackwell B, Beck JV (2010) A technique for uncertainty analysis for inverse heat conduction problems. Int J Heat Mass Tran 53(4):753–759

    Article  MATH  Google Scholar 

  • Cao SG, Rees NW (1995) Identification of dynamic fuzzy models. Fuzzy Sets Syst 74(3):307–320

    Article  MathSciNet  MATH  Google Scholar 

  • Capasso V, Engl HW, Kindermann S (2008) Parameter identification in a random environment exemplified by a multiscale model for crystal growth. Multiscale Model Sim 7(2):814–841

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222

    Article  Google Scholar 

  • Choi CK, Yoo HH (2016) Stochastic inverse method to identify parameter random fields in a structure. Struct Multidiscip O 54(6):1557–1571

    Article  MathSciNet  Google Scholar 

  • Fletcher R (2013) Practical Methods of Optimization. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Fujimoto RM (2000) Parallel and Distributed Simulation Systems. John Wiley & Sons, New York

    Google Scholar 

  • Jiang C, Liu G, Han X (2008) A novel method for uncertainty inverse problems and application to material characterization of composites. Exp Mech 48(4):539–548

    Article  Google Scholar 

  • Klimke A (2006) Uncertainty Modeling Using Fuzzy Arithmetic and Sparse Grids. Ph.D. Thesis, Universität Stuttgart, Shaker Verlag, Aachen

  • Korycki R (2001) Two-dimensional shape identification for the unsteady conduction problem. Struct Multidiscip O 21(3):229–238

    Article  Google Scholar 

  • Ku CJ, Cermak JE, Chou LS (2007) Random decrement based method for modal parameter identification of a dynamic system using acceleration responses. J Wind Eng Ind Aerod 95(6):389–410

    Article  Google Scholar 

  • Lai Y, Jiang X, Fang L (2012) Isight Optimization Theory and Examples. Beihang University Press, Beijing

    Google Scholar 

  • Li S (2015) Engineering Fuzzy Mathematics with Applications. Harbin Institute of Technology Press, Harbin

    Google Scholar 

  • Liu J, Sun X, Han X, Jiang C, Yu D (2015a) Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method. Mech Syst Signal Pr 56:35–54

    Article  Google Scholar 

  • Liu J, Sun X, Li K, Jiang C, Han X (2015b) A probability density function discretization and approximation method for the dynamic load identification of stochastic structures. J Sound Vib 357:74–94

    Article  Google Scholar 

  • Moens D, Hanss M (2011) Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics recent advances. Finite Elem Anal Des 47(1):4–16

    Article  Google Scholar 

  • Nayak S, Chakraverty S (2013) Non-probabilistic approach to investigate uncertain conjugate heat transfer in an imprecisely defined plate. Int J Heat Mass Tran 67:445–454

    Article  Google Scholar 

  • Nazin SA, Polyak BT (2005) Interval parameter estimation under model uncertainty. Math Comp Model Dyn 11(2):225–237

    Article  MathSciNet  MATH  Google Scholar 

  • Nicolai BM, Egea JA, Scheerlinck N, Banga JR, Datta AK (2011) Fuzzy finite element analysis of heat conduction problems with uncertain parameters. J Food Eng 103:38–46

    Article  Google Scholar 

  • Rice JA (1995) Mathematical Statistics and Data Analysis. Duxbury Press, Belmont

    MATH  Google Scholar 

  • Rump SM (1992) On the solution of interval linear systems. Computing 47(3–4):337–353

    Article  MathSciNet  MATH  Google Scholar 

  • Selimefendigil F, Öztop HF (2012) Fuzzy-based estimation of mixed convection heat transfer in a square cavity in the presence of an adiabatic inclined fin. Int Commun Heat Mass 39(10):1639–1646

    Article  Google Scholar 

  • Sepahvand K, Marburg S (2015) Non-sampling inverse stochastic numerical-experimental identification of random elastic material parameters in composite plates. Mech Syst Signal Pr 54:172–181

    Article  Google Scholar 

  • Stavroulakis GE (2013) Inverse and Crack Identification Problems in Engineering Mechanics. Springer, Berlin

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  • Tao W (2001) Numerical Heat Transfer. Xi’an Jiaotong University Press, Xi’an

    Google Scholar 

  • Theodoridis D, Boutalis Y, Christodoulou M (2012) Dynamical recurrent neuro-fuzzy identification schemes employing switching parameter hopping. Int J Neural Syst 22(2):1250004

    Article  Google Scholar 

  • Wang C, Qiu Z (2015a) Interval analysis of steady-state heat convection–diffusion problem with uncertain-but-bounded parameters. Int J Heat Mass Tran 91:355–362

    Article  Google Scholar 

  • Wang C, Qiu Z (2015b) Hybrid uncertain analysis for temperature field prediction with random, fuzzy and interval parameters. Int J Therm Sci 98:124–134

    Article  Google Scholar 

  • Wang C, Qiu Z (2015c) Improved numerical prediction and reliability-based optimization of transient heat conduction problem with interval parameters. Struct Multidiscip Optim 51(1):113–123

    Article  Google Scholar 

  • Wang X, Yang C, Wang L, Yang H (2013) Membership-set identification method for structural damage based on measured natural frequencies and static displacements. Struct Health Monit 12(1):23–34

    Article  Google Scholar 

  • Wang X, Xia Y, Zhou X, Yang C (2014) Structural damage measure index based on non-probabilistic reliability model. J Sound Vib 333(5):1344–1355

    Article  Google Scholar 

  • Wang C, Qiu Z, Yang Y (2016a) Uncertainty propagation of heat conduction problem with multiple random inputs. Int J Heat Mass Tran 99:95–101

    Article  Google Scholar 

  • Wang C, Qiu Z, Yang Y (2016b) Collocation methods for uncertain heat convection-diffusion problem with interval input parameters. Int J Therm Sci 107:230–236

    Article  Google Scholar 

  • Wang C, Qiu Z, Xu M (2017) Collocation methods for fuzzy uncertainty propagation in heat conduction problem. Int J Heat Mass Tran 107:631–639

    Article  Google Scholar 

  • Wendlandt WW (1974) Thermal Methods of Analysis. Wiley Interscience, New York

    Google Scholar 

  • Xia B, Yu D, Liu J (2013) Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters. J Fluid Struct 38:146–163

    Article  Google Scholar 

  • Xue Y, Yang H (2013a) Interval estimation of convection-diffusion heat transfer problems. Numer Heat Tr B-Fund 64(3):263–273

    Article  Google Scholar 

  • Xue Y, Yang H (2013b) Interval identification of thermal parameters for convection-diffusion heat transfer problems. Asia-Pacific Congress for Computational Mechanics, Singapore

    Google Scholar 

  • Yilmaz S, Oysal Y (2010) Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE T Neural Network 21(10):1599–1609

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zhang W, Liu J, Cho C, Han X (2015) A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures. Mech Syst Signal Pr 60:853–865

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alexander von Humboldt Foundation, 111 Project (No. B07009), and National Natural Science Foundation of PR China (No.11432002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Appendix: Fuzzy set theory

Appendix: Fuzzy set theory

Definition 1 (fuzzy sets)

Given the definition domain R, a fuzzy set X can be defined as

$$ X=\left\{\left.\left(x,{\mu}_X(x)\right)\right|x\in R,{\mu}_X(x)\in \left[0,1\right]\right\} $$

where μ X (x) is the membership function representing the degree a sample x belongs to the set R.

Definition 2 (level-cut strategy)

Given a fuzzy set X, for any λ ∈ [0, 1] the normal set

$$ {X}_{\lambda }=\left\{\left.x\right|x\in X,{\mu}_X(x)\ge \lambda \right\} $$

is defined as the λ-cut set, where λ is called the cut level. Usually, the cut sets are considered as intervals of confidence, since in case of convex fuzzy sets, they are closed intervals associated with a gradation of confidence between [0,1].

Definition 3 (fuzzy decomposition theorem)

Based on the λ-cut sets, any fuzzy set X defined in the domain R can be visually expressed by the normal sets

$$ X=\underset{\lambda \in \left[0,1\right]}{\cup}\left(\lambda \times {X}_{\lambda}\right) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Matthies, H.G. & Qiu, Z. Optimization-based inverse analysis for membership function identification in fuzzy steady-state heat transfer problem. Struct Multidisc Optim 57, 1495–1505 (2018). https://doi.org/10.1007/s00158-017-1821-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1821-2

Keywords

Navigation