Skip to main content
Log in

Local optimum in multi-material topology optimization and solution by reciprocal variables

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

It is revealed that the local optimum is particularly prone to occur in multi-material topology optimization using the conventional SIMP method. To overcome these undesirable phenomena, reciprocal variables are introduced into the formulation of topology optimization for minimization of total weight with the prescribed constraint of various structural responses. The SIMP scheme of multi-phase materials is adopted as the interpolation of the elemental stiffness matrix, mass matrix and weight. The sensitivities of eigenvalue and weight with respect to design variables are derived. Explicit approximations of natural eigenvalue and weight are given with the help of the first and second order Taylor series expansion. Thus, the optimization problem is solved using a sequential quadratic programming approach, by setting up a sub-problem in the form of a quadratic program. The filtering technique by solving the Helmholtz-type partial differential equation is performed to eliminate the checkerboard patterns and mesh dependence. Numerical analysis indicates that it is beneficial to avoid the local optimum by using the reciprocal SIMP formulation. Besides, the structure composed of multi-materials can achieve a lighter design than that made from the exclusive base material. The effectiveness and capability of the proposed method are also verified by nodal displacement constraint and multiple constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM - Control, Optimisation and Calculus of Variations 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2005) Topology optimization of continuum structures with respect to simple and multiple eigenfrequencies. 6th world congress of structural and multidisciplinary optimization, Rio de Janeiro, Brazil

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multi Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2011) Topology optimization of continuum structures: A review. Appl Mech Rev 54:331–390

    Article  Google Scholar 

  • Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88(8):774–796

    Article  MATH  Google Scholar 

  • Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48:461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J Appl Mech - T Asme 81(18):081009

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014b) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655

    Article  MathSciNet  MATH  Google Scholar 

  • Hevjsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multi Optim 43:811–825

    Article  MATH  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049

    Article  Google Scholar 

  • Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or Multi-phase materials. Comput Mech 43(3):393–401

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364

    Article  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    Article  MATH  Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124

    Article  MATH  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Masur EF (1984) Optimal structural design under multiple eigenvalue constraints. Int J Solids Struct 20(3):211–231

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multi Optim 20(1):2–11

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multi Optim 37(3):217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Peterson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multi Optim 16(1):68–75

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multi Optim 8(4):207–227

    Article  Google Scholar 

  • Sun R, Liu D, Xu T, Zhang T, Zuo W (2014) New Adaptive Technique of Kirsch Method for Structural Reanalysis. AIAA J 52(3):486–495

    Article  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multi Optim 52(3):527–547

    Article  MathSciNet  Google Scholar 

  • Rojas-Labanda S, Stolpe M (2016) An efficient second-order SQP method for structural topology optimization. Struct Multi Optim 53(6):1315–1333

    Article  MathSciNet  Google Scholar 

  • Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multi Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optimiz 12:555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Sui Y, Peng X (2006) The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22:68–75

    Article  MathSciNet  MATH  Google Scholar 

  • Takakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multi Optim 49(4):621–642

    Article  MathSciNet  Google Scholar 

  • Thomsen J (1992) Topology optimization of structures composed of one or two materials. Journal of Structural Optimization 5(1–2):108–115

    Article  Google Scholar 

  • Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Wang X (2004) "Color" level sets: a multi-phase method for structural topology optimization with Multi-phase materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MathSciNet  MATH  Google Scholar 

  • Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J Royal Aeronaut Soc 66:590–591

    Article  Google Scholar 

  • Xia L, Xia Q, Huang X, Xie YM (2016) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Method E. https://doi.org/10.1007/s11831-016-9203-2

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(6):885–896

    Article  Google Scholar 

  • Ye HL, Wang WW, Chen N, Sui YK (2016) Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta Mech Sinica 32(4):649–658

    Article  MathSciNet  MATH  Google Scholar 

  • Yin L, Ananthasuresh GK (2001) Topology of compliant mechanisms with Multi-phase materials using a peak function material interpolation scheme. Struct Multi Optim 23(1):49–62

    Article  Google Scholar 

  • Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multi Optim 53(6):1157–1177

    Article  MathSciNet  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multi Optim 53:1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized Shape optimization. Comput Methods Appl Mech 89(1–3):309–336

    Article  Google Scholar 

  • Zhou SW, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multi Optim 33(2):89–111

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo W, Saitou K (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct Multi Optim 55:477–491

    Article  MathSciNet  Google Scholar 

  • Zuo W, Xu T, Zhang T, Xu T (2011) Fast structural optimization with frequency constraints by genetic algorithm using eigenvalue reanalysis methods. Struct Multi Optim 43(6):799–810

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51405123, 51775308). the Fundamental Research Funds for the Central Universities (2017MS077). We are thankful for Professor Krister Svanberg for MMA program made freely available for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Long.

Appendix

Appendix

The evaluation of matrix B and H in (14) can be expressed as.

\( \mathbf{B}=\left[\frac{\partial W}{\partial {x}_i},\frac{\partial W}{\partial {x}_i}\right] \), \( \mathbf{H}=\left[\begin{array}{cc}\hfill \frac{\partial^2W}{\partial {x}_i^2}\hfill & \hfill \frac{\partial^2W}{\partial {x}_i^2}\hfill \\ {}\hfill \frac{\partial^2W}{\partial {x}_i^2}\hfill & \hfill \frac{\partial^2W}{\partial {x}_i^2}\hfill \end{array}\right] \).

with

$$ \frac{\partial W}{\partial {x}_i}=-\gamma {x}_i^{-\left(\gamma +1\right)}\left[{w}^{\mathrm{I}\mathrm{I}}+{y}_i^{-\gamma}\left({w}^{\mathrm{I}}-{w}^{\mathrm{I}\mathrm{I}}\right)\right] $$
$$ \frac{\partial W}{\partial {y}_i}=-\gamma {x}_i^{-\gamma }{y}_i^{-\left(\gamma +1\right)}\left({w}^{\mathrm{I}}-{w}^{\mathrm{I}\mathrm{I}}\right) $$
$$ \frac{\ {\partial}^2W}{\partial {x}_i^2}=\gamma \left(\gamma +1\right){x}_i^{-\left(\gamma +2\right)}\left[{w}^{\mathrm{I}\mathrm{I}}+{y}_i^{-\gamma}\left({w}^{\mathrm{I}}-{w}^{\mathrm{I}\mathrm{I}}\right)\right] $$
$$ \frac{\ {\partial}^2W}{\partial {y}_i^2}=\gamma \left(\gamma +1\right){x}_i^{-\gamma }{y}_i^{-\left(\gamma +2\right)}\left({w}^{\mathrm{I}}-{w}^{\mathrm{I}\mathrm{I}}\right) $$
$$ \frac{\ {\partial}^2W}{\partial {x}_i\partial {y}_i}={\gamma}^2{x}_i^{-\left(\gamma +1\right)}{y}_i^{-\left(\gamma +1\right)}\left({w}^{\mathrm{I}}-{w}^{\mathrm{I}\mathrm{I}}\right) $$

When the off-diagonal elements are set to be zeros, the Hessian matrix can be always positive definite. More importantly, we can easily compute the inverse of the Hessian matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, K., Wang, X. & Gu, X. Local optimum in multi-material topology optimization and solution by reciprocal variables. Struct Multidisc Optim 57, 1283–1295 (2018). https://doi.org/10.1007/s00158-017-1811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1811-4

Keywords

Navigation