Skip to main content
Log in

Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, the topology optimization method is extended to arrive at the desired deformation behavior within local structural domains by distinguishing and suppressing specific deformation in a certain direction. Compared to the standard topology optimization and existing shape preserving design method, the contribution of this paper is twofold. First, Artificial Weak Elements (AWE) are defined and attached to the appropriate local domain. The strain energies of the AWE are calculated as a measurement to describe the deformation behavior quantitatively. Second, particular orthotropic material properties are defined for the AWE according to the given direction of the desired deformation, which formulate Orthotropic Artificial Weak Elements (AWEort). By introducing the constraint on the strain energy of the AWEort into a standard compliance based topology optimization, the deformation in the corresponding direction is suppressed, resulting in the desired deformation behavior. Several numerical examples are tested and compared to the standard topological design to illustrate the effect of the directional deformation behavior design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38. https://doi.org/10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  • Gao T, Qiu L, Zhang W (2017) Topology optimization of continuum structures subjected to the variance constraint of reaction forces. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-017-1742-0

  • Gonlinval JC (2011) Mechanical design of turbojet engines - an introduction. Textbook of University of Liege, AERO0015–1

  • Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sinica 26:807–823. https://doi.org/10.1007/s10409-010-0395-7

    Article  MathSciNet  MATH  Google Scholar 

  • Hou J, Zhu JH, He F, Zhang WH (2017) Topology optimization of stiffeners layout with constraints on the multi-fastener joint loads. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2017.05.005

  • Huang X, Xie YM (2009) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40:409–416

    Article  MathSciNet  MATH  Google Scholar 

  • James KA, Waisman H (2016) Layout design of a bi-stable cardiovascular stent using topology optimization. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2016.02.036

  • Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98:265–286

    Article  MATH  Google Scholar 

  • Li Q, Steven GP, Xie YM (1999) Displacement minimization of thermoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179:361–378

    Article  MATH  Google Scholar 

  • Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27:27–42

    Article  Google Scholar 

  • Nam SJ, Jang GW, Kim YY (2012) The spring-connected rigid block model based automatic synthesis of planar linkage mechanisms: numerical issues and remedies. J Mech Des 134:051002

    Article  Google Scholar 

  • Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705

    Article  MATH  Google Scholar 

  • Qiao H, Liu S (2013) Topology optimization by minimizing the geometric average displacement. Eng Optim 45:1–18

    Article  MathSciNet  Google Scholar 

  • Radovcic Y, Remouchamps A (2002) BOSS Quattro: an open system for parametric design. Struct Multidiscip Optim 23:140–152

    Article  Google Scholar 

  • Rong JH, Yi JH (2010) A structural topological optimization method for multi-displacement constraints and any initial topology configuration. Acta Mech Sinica 26:735–744. https://doi.org/10.1007/s10409-010-0369-9

    Article  MathSciNet  MATH  Google Scholar 

  • Sakata S, Ashida F (2009) Perturbation-based successive approximate topology optimization for a displacement minimization problem. Comput Methods Appl Mech Eng 199:148–157

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the Design of Compliant Mechanisms Using Topology Optimization. Mech Struct Mach 25:493–524

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424. https://doi.org/10.1007/s00158-006-0087-x

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055. https://doi.org/10.1007/s00158-013-0978-6

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16:68–75

    Article  Google Scholar 

  • Stanford B, Beran P (2012) Optimal compliant flapping mechanism topologies with multiple load cases. J Mech Des 134:51007

    Article  Google Scholar 

  • Stanford B, Beran P, Kobayashi M (2013) Simultaneous topology optimization of membrane wings and their compliant flapping mechanisms. AIAA J 51:1431–1441

    Article  Google Scholar 

  • Svanberg K (2007) On a globally convergent version of MMA. 7th World Congress on structural and multidisciplinary optimization. COEX Seoul, Korea

    Google Scholar 

  • Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47:673–686

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941–956

    Article  Google Scholar 

  • Xia Q, Shi T, Wang MY, Liu S (2010) A level set based method for the optimization of cast part. Struct Multidiscip Optim 41:735–747

    Article  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  • Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266

    Article  Google Scholar 

  • Zhang JX, Wang B, Niu F (2014) Optimal design of concentrated force diffusion for short shell structure using hierarchical radial ribs (in Chinese). Chinese J Comput Mech 31(2):141–148

    Google Scholar 

  • Zhu JH, Zhang WH, Beckers P (2009) Inergrated layout design of multi-componment system. Int J Number Methods Eng 78:631–651

  • Zhu JH, Li Y, Zhang WH, Hou J (2015) Shape preserving design with structural topology optimization. Struct Multidiscip Optim 53(4):893–906. https://doi.org/10.1007/s00158-015-1364-3

    Article  MathSciNet  Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Meth Eng 23:595–622

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21–45

    Article  MathSciNet  Google Scholar 

  • Zuo ZH, Xie YM (2014) Evolutionary topology optimization of continuum structures with a global displacement control. Comput Aided Des 56:58–67

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (11432011, 11620101002), National Key Research and Development Program (2017YFB1102800), Key Research and Development Program of Shaanxi (S2017-ZDYF-ZDXM-GY-0035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Hong Zhu or Wei Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhu, J.H., Zhang, W.H. et al. Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method. Struct Multidisc Optim 57, 1251–1266 (2018). https://doi.org/10.1007/s00158-017-1808-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1808-z

Keywords

Navigation