Skip to main content
Log in

Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The modelling of a system containing implants used in ventral hernia repair and human tissue suffers from many uncertainties. Thus, a probabilistic approach is needed. The goal of this study is to define an efficient numerical method to solve non-linear biomechanical models supporting the surgeon in decisions about ventral hernia repair. The model parameters are subject to substantial variability owing to, e.g., abdominal wall parameter uncertainties. Moreover, the maximum junction force, the quantity of interest which is worthy of scrutiny due to hernia recurrences, is non-smooth. A non-intrusive regression-based polynomial chaos expansion method is employed. The choice of regression points is crucial in such methods, thus we study the influence of this choice on the quantity of interest, and look for an efficient strategy. For this purpose, several aspects are studied : (i) we study the quality of the quantity of interest, i.e. accuracy of the mean and standard deviation, (ii) we perform a global sensitivity analysis using Sobol sensitivity indices. The influence of uncertainties of the chosen variables is presented. This study leads to the definition of an efficient numerical simulation dedicated to our model of implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Acosta Santamaría V, Siret O, Badel P, Guerin G, Novacek V, Turquier F, Avril S (2015) Material model calibration from planar tension tests on porcine linea alba. J Mech Behav Biomed Mater 43:26–34. https://doi.org/10.1016/j.jmbbm.2014.12.003

    Article  Google Scholar 

  • de Aguiar P, Bourguignon B, Khots M, Massart D, Phan-Than-Luu R (1995) D-optimal designs. Chemom Intell Lab Syst 30(2):199–210. https://doi.org/10.1016/0169-7439(94)00076-X

    Article  Google Scholar 

  • Antille G, Weinberg A et al (2000) A study of d-optimal designs efficiency for polynomial regression université de genève/faculté des sciences économiques et sociales

  • Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Revue européenne de mécanique numérique 15(1–3):81–92. https://doi.org/10.3166/remn.15.81-92

    MATH  Google Scholar 

  • Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197. https://doi.org/10.1016/j.probengmech.2009.10.003

    Article  Google Scholar 

  • Blatman G, Sudret B (2010) Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Syst Saf 95(11):1216–1229. https://doi.org/10.1016/j.ress.2010.06.015

    Article  Google Scholar 

  • Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  • Blatman G, Sudret B, Berveiller M (2007) Quasi random numbers in stochastic finite element analysis. Mec Ind 8(3):289–297. https://doi.org/10.1051/meca:2007051

    Google Scholar 

  • Breuing K, Butler CE, Ferzoco S, Franz M, Hultman CS, Kilbridge JF, Rosen M, Silverman RP, Vargo D, Group VHW et al (2010) Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery 148(3):544–558

    Article  Google Scholar 

  • Burnaev E, Panin I, Sudret B (2016) Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions. Springer International Publishing, Cham, pp 165–184

    Google Scholar 

  • Carter SA, Hicks SC, Brahmbhatt R, Liang MK (2014) Recurrence and pseudorecurrence after laparoscopic ventral hernia repair: predictors and patient-focused outcomes. Am Surg 80(2):138–48

    Google Scholar 

  • Chamoin L, Florentin E, Pavot S, Visseq V (2012) Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Comput Struct 106-107(i):189–195. https://doi.org/10.1016/j.compstruc.2012.05.002

    Article  Google Scholar 

  • Cho I, Lee Y, Ryu D, Choi DH (2017) Comparison study of sampling methods for computer experiments using various performance measures. Struct Multidiscip Optim 55(1):221–235. https://doi.org/10.1007/s00158-016-1490-6

    Article  Google Scholar 

  • Choi SK, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198

    Article  Google Scholar 

  • Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129(2):231–235

    Article  Google Scholar 

  • Cooney GM, Lake SP, Thompson DM, Castile RM, Winter DC, Simms CK (2016) Uniaxial and biaxial tensile stress–stretch response of human linea alba. J Mech Behav Biomed Mater 63:134–140

    Article  Google Scholar 

  • Crestaux T, Le Maître O, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172. Special Issue on Sensitivity Analysis

    Article  Google Scholar 

  • Deeken CR, Thompson DM, Castile RM, Lake SP (2014) Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. J Mech Behav Biomed Mater 38:6–16

    Article  Google Scholar 

  • Dubourg V, Sudret B, Bourinet JM (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44(5):673–690. https://doi.org/10.1007/s00158-011-0653-8

    Article  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press INC (english translation), New York

    Google Scholar 

  • Filomeno Coelho R, Lebon J, Bouillard P (2011) Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion. Struct Multidiscip Optim 43(5):707–729. https://doi.org/10.1007/s00158-010-0608-5

    Article  MathSciNet  MATH  Google Scholar 

  • Fishman GS (1996) Monte carlo. Springer, New York

    Book  MATH  Google Scholar 

  • Gao Z, Zhou T (2014) On the choice of design points for least square polynomial approximations with application to uncertainty quantification. Communications in Computational Physics 16(2):365–381. https://doi.org/10.4208/cicp.130813.060214a

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  • Hernández-Gascón B, Mena A, Pena E, Pascual G, Bellón J, Calvo B (2013) Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41(2):433– 444

    Article  Google Scholar 

  • Hernández-Gascón B, Peña E, Grasa J, Pascual G, Bellón JM, Calvo B (2013) Mechanical response of the herniated human abdomen to the placement of different prostheses. J Biomech Eng 135(5):051,004

    Article  Google Scholar 

  • Hu C, Youn BD (2011) Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidiscip Optim 43(3):419–442. https://doi.org/10.1007/s00158-010-0568-9

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Liu Y, Zhang Y, Zhang X (2017) Reliability analysis of structures using stochastic response surface method and saddlepoint approximation. Struct Multidiscip Optim 55(6):2003–2012. https://doi.org/10.1007/s00158-016-1617-9

  • Huberts W, Donders W, Delhaas T, Vosse F (2014) Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. Int J Numer Methods Biomed Eng 30 (12):1679–1704

    Article  Google Scholar 

  • Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. Graduate School New Brunswick, Ph.D. thesis

  • Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5(3):113–118

    Article  Google Scholar 

  • Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Scientific computation. Springer Netherlands, Dordrecht

    Book  MATH  Google Scholar 

  • Le Maître OP, Reagan MT, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow: Ii. random process. J Comput Phys 181(1):9–44. https://doi.org/10.1006/jcph.2002.7104

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SH, Chen W (2008) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239. https://doi.org/10.1007/s00158-008-0234-7

    Article  Google Scholar 

  • Lubowiecka I (2015) Mathematical modelling of implant in an operated hernia for estimation of the repair persistence. Comput Methods Biomech Biomed Engin 18(4):438–445

    Article  Google Scholar 

  • Lubowiecka I, Szepietowska K, Szymczak C, Tomaszewska A (2016) Preliminary study on the optimal choice of an implant and its orientation in ventral hernia repair. J Theor Appl Mech 54(2):411–421. https://doi.org/10.15632/jtam-pl.54.2.411

    Article  Google Scholar 

  • Lyons M, Mohan H, Winter D, Simms C (2015) Biomechanical abdominal wall model applied to hernia repair. Br J Surg 102(2):e133–e139

    Article  Google Scholar 

  • Maurer M, Röhrnbauer B, Feola A, Deprest J, Mazza E (2014) Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization. J Mech Behav Biomed Mater 40:42–58

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61

    Article  MATH  Google Scholar 

  • Morokoff WJ, Caflisch RE (1994) Quasi-Random Sequences and their discrepancies . SIAM J Sci Comput 15(6):1251–1279. https://doi.org/10.1137/0915077

    Article  MathSciNet  MATH  Google Scholar 

  • Redhe M, Forsberg J, Jansson T, Marklund PO, Nilsson L (2002) Using the response surface methodology and the d-optimality criterion in crashworthiness related problems. Struct Multidiscip Optim 24 (3):185–194. https://doi.org/10.1007/s00158-002-0228-9

    Article  Google Scholar 

  • Schobi R, Sudret B, Wiart J (2015) Polynomial-chaos-based Kriging. Int J Uncertain Quantif 5(2):171–193. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015012467

    Article  MathSciNet  Google Scholar 

  • Simón-Allué R, Calvo B, Oberai A, Barbone P (2017) Towards the mechanical characterization of abdominal wall by inverse analysis. J Mech Behav Biomed Mater 66:127–137

    Article  Google Scholar 

  • Simón-Allué R, Hernández-Gascón B, Lèoty L, Bellón J, Peña E, Calvo B (2016) Prostheses size dependency of the mechanical response of the herniated human abdomen. Hernia 20(6):839–848

    Article  Google Scholar 

  • Smith K (1918) On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12(1-2):1–85. https://doi.org/10.1093/biomet/12.1-2.1

    Article  Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1-3):271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  • Song C, Alijani A, Frank T, Hanna G, Cuschieri A (2006) Elasticity of the living abdominal wall in laparoscopic surgery. J Biomech 39(3):587–591

    Article  Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93 (7):964–979. https://doi.org/10.1016/j.ress.2007.04.002

    Article  Google Scholar 

  • Suryawanshi A, Ghosh D (2016) Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels. Struct Multidiscip Optim 53(5):1069–1080. https://doi.org/10.1007/s00158-015-1322-0

    Article  MathSciNet  Google Scholar 

  • Szymczak C, Lubowiecka I, Szepietowska K, Tomaszewska A (2017) Two-criteria optimisation problem for ventral hernia repair. Comput Methods Biomech Biomed Engin 20(7):760–769

    Article  Google Scholar 

  • Szymczak C, Lubowiecka I, Tomaszewska A, Śmietański M (2010) Modeling of the fascia-mesh system and sensitivity analysis of a junction force after a laparascopic ventral hernia repair. Journal of Thoretical and Applied Mechanics 48(4):933–950

    Google Scholar 

  • Szymczak C, Lubowiecka I, Tomaszewska A, Śmietański M (2012) Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin Biomech (Bristol, Avon) 27(2):105–10. https://doi.org/10.1016/j.clinbiomech.2011.08.008

    Article  Google Scholar 

  • Szymczak C, Śmietański M (2012) Selected problems of laparoscopic ventral hernia repair - modeling and simulation. Alfa-medica press Gdańsk

  • Tomaszewska A, Lubowiecka I, Szymczak C, Śmietański M, Meronk B, Kłosowski P, Bury K (2013) Physical and mathematical modelling of implant-fascia system in order to improve laparoscopic repair of ventral hernia. Clin Biomech 28(7):743–751. https://doi.org/10.1016/j.clinbiomech.2013.06.009

    Article  Google Scholar 

  • Tran D, Mitton D, Voirin D, Turquier F, Beillas P (2014) Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. J Biomech 47(12):3056–3063

    Article  Google Scholar 

  • Tran D, Podwojewski F, Beillas P, Ottenio M, Voirin D, Turquier F, Mitton D (2016) Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J Mech Behav Biomed Mater 60:451–459

    Article  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Article  MathSciNet  MATH  Google Scholar 

  • Winkelmann K, Górski J (2014) The use of response surface methodology for reliability estimation of composite engineering structures. J Theor Appl Mech 52(4):1019–1032

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644. https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  • Zein S, Colson B, Glineur F (2012) An efficient sampling method for Regression-Based polynomial chaos expansion. Communications in Computational Physics 13(4):1173–1188. https://doi.org/10.4208/cicp.020911.200412a

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grant UMO-2015/17/N/ST8/02705 from the National Science Centre, Poland, and by the subsidy for the development of young scientists given by the Faculty of Civil and Environmental Engineering, Gdańsk University of Technology. Computations were performed partially in TASK Computer Science Centre, Gdańsk, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Szepietowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szepietowska, K., Magnain, B., Lubowiecka, I. et al. Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Struct Multidisc Optim 57, 1391–1409 (2018). https://doi.org/10.1007/s00158-017-1799-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1799-9

Keywords

Navigation