Advertisement

Structural and Multidisciplinary Optimization

, Volume 57, Issue 3, pp 1021–1045 | Cite as

Topological metallic structure design for microwave applications using a modified interpolation scheme

  • Hyundo Shin
  • Jeonghoon Yoo
RESEARCH PAPER

Abstract

In structural design for microwave applications, metallic structures generate the skin effect that critically affects the performance of microwave devices. In finite element analysis (FEA), highly refined mesh generation is necessary to take the skin effect into account. To avoid the expensive fine meshing and computing process, the condition of the perfect electrical conductor (PEC) or the impedance boundary condition has been generally used in FEA based topology optimization. In this study, we proposed a modified penalization formulation using the shifted sigmoid function for the interpolation of the electric permittivity of conductive materials and applied it to microwave structural design through the phase field design method. The proposed approach is available in case of applications to structural design composed of non-ferromagnetic metals. Based on the derived optimal shape, a simple post-processing scheme is employed only once to determine the clear boundary by eliminating the gray scale area for the purpose of manufacturing feasibility. The validity of the proposed design approach is discussed in three numerical examples allowing the change of the target operation frequency.

Keywords

Topological design,  Phase field design method,  Conductive material,  Sigmoid function,  Microwave application 

Notes

Funding

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2016R1A2B4008501).

References

  1. Aage N, Mortensen NA, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83:228–248MathSciNetzbMATHGoogle Scholar
  2. Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetCrossRefzbMATHGoogle Scholar
  3. Amari S, Vahldieck R, Bornemann J (1999) Analysis of propagation in periodically loaded circular waveguides. IEE Proc Microw Antennas Propag 146:50–54CrossRefGoogle Scholar
  4. Andkjær J, Sigmund O (2011) Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett 98:021112CrossRefGoogle Scholar
  5. Andkjær J, Nishiwaki S, Nomura T, Sigmund O (2010) Topology optimization of grating couplers for the efficient excitation of surface plasmons. J Opt Soc Am B 27:1828–1832CrossRefGoogle Scholar
  6. Arora JS (2011) Introduction to optimum design 3rd, revised edn. Academic Press, San DiegoGoogle Scholar
  7. Bacaër N (2011) A short history of mathematical population dynamics. Springer-Verlag, LondonCrossRefzbMATHGoogle Scholar
  8. Balanis CA (1989) Advanced Engineering Electromagnetics. Wiley, New YorkGoogle Scholar
  9. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications. Springer-Verlag, BerlinzbMATHGoogle Scholar
  11. Byun S, Lee HY, Yoo J (2014) Systematic approach of nanoparticle design to enhance the broadband plasmonic scattering effect. J Appl Phys 115:184302CrossRefGoogle Scholar
  12. Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cheng DK (2003) Fundamentals of Engineering Electromagnetics. Addison-Wesley, ReadingGoogle Scholar
  14. Choi JS, Yoo J (2008) Structural optimization of ferromagnetic materials based on the magnetic reluctivity for magnetic field problems. Comput Methods Appl Mech Eng 197:4193–4206CrossRefzbMATHGoogle Scholar
  15. Choi JS, Yamada T, Izui K, Nishiwaki S, Yoo J (2011) Topology optimization using a reaction-diffusion equation. Comput Methods Appl Mech Eng 200:2407–2420MathSciNetCrossRefzbMATHGoogle Scholar
  16. Choi JS, Izui K, Nishiwaki S, Kawamoto A, Nomura T (2012) Rotor pole design of IPM motors for a sinusoidal air-gap flux density distribution. Struct Multidiscip Optim 46:445–455CrossRefGoogle Scholar
  17. Cismasu M, Gustafsson M (2014) Antenna bandwidth optimization with single frequency simulation. IEEE Trans Antennas Propag 62:1304–1311MathSciNetCrossRefzbMATHGoogle Scholar
  18. COMSOL Multiphysics 3.5a (2008) COMSOL AB, StockholmGoogle Scholar
  19. Diaz RD, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. 41:163–177Google Scholar
  20. Dubrovka R, Vazquez J, Parini C, Moore D (2006) Equivalent circuit method for analysis and synthesis of frequency selective surfaces. IEE Proc Microw Antennas Propag 153:213–220CrossRefGoogle Scholar
  21. Fox M (2010) Optical Properties of Solids. Oxford University Press, New YorkGoogle Scholar
  22. Hassan E, Wadbro E, Berggren M (2014) Topology optimization of metallic antennas. IEEE Trans Antennas Propag 62:2488–2500MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hayt WH, Byck JA (2010) Engineering Electromagnetics. McGraw-Hill, New YorkGoogle Scholar
  24. Hui SYR, Zhong W, Lee CK (2014) A critical review of recent progress in mid-range wireless power transfer. IEEE Trans Power Electr 29:4500–4511CrossRefGoogle Scholar
  25. Hunter IC, Billonet L, Jarry B, Guillon P (2002) Microwave filters-application and technology. IEEE Trans Microw Theory Tech 50:794–805CrossRefGoogle Scholar
  26. Kim H, Kim C, Seong HK, Yoo J (2015) Structural optimization of a magnetic actuator with simultaneous consideration of thermal and magnetic performances. IEEE Trans Magn 51:8208509Google Scholar
  27. Kiziltas G, Psychoudakis D, Volakis JL, Kikuchi N (2003) Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna. IEEE Trans Antennas Propag 51:2732–2743CrossRefGoogle Scholar
  28. Koulouridis S, Psychoudakis D, Volakis JL (2007) Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans Antennas Propag 55:594–603CrossRefGoogle Scholar
  29. Kudsia C, Cameron R, Tang WC (1992) Innovations in microwave filters and multiplexing networks for communications satellite systems. IEEE Trans Microw Theory 40:1133–1149CrossRefGoogle Scholar
  30. Lim H, Shin D, Kim K, Yoo J (2014a) Electromagnetic band-gap structure design using the auxetic unit-structure for easily controllable tenability. J Appl Phys 116:243506CrossRefGoogle Scholar
  31. Lim D, Shin D, Shin H, Kim K, Yoo J (2014b) A systematic approach to enhance off-axis directional electromagnetic wave by two-dimensional structure design. Opt Express 22:6511–6518CrossRefGoogle Scholar
  32. Lim H, Yoo J, Choi JS (2014c) Topological nano-aperture configuration by structural optimization based on the phase field method. Struct Multi Optim 49:209–224MathSciNetCrossRefGoogle Scholar
  33. Monorchio A, Manara G, Serra U, Marola G, Pagana E (2005) Design of waveguide filters by using genetically optimized frequency selective surfaces. IEEE Microw Wireless Compon Lett 15:407–409CrossRefGoogle Scholar
  34. Nguyen DM, Evgrafov A, Gravesen J (2012) Isogeometric shape optimization for electromagnetic scattering problems. Prof Electroman Res B 45:117–146CrossRefGoogle Scholar
  35. Nishiwaki S, Nomura T, Kinoshita S, Izui K, Yoshimura M, Sato K, Hirayama K (2009) Topology optimization for cross-section designs of electromagnetic waveguides targeting guiding characteristics. Finite Elem Anal Des 45:944–957CrossRefGoogle Scholar
  36. Peterson AF, Ray SL, Mittra R (1998) Computational methods for electromagnetics. IEEE Press, New YorkzbMATHGoogle Scholar
  37. Polyanskiy MN (2017) Refractive index and relative permittivity database are provided. http://refractiveindex.info/?shelf=main&book=Cu&page=McPeak. Accessed 5 Apr 2017
  38. Sage JM, Bolkhovsky C, Oliver WD, Turek B, Welander PB (2011) Study of loss in superconducting coplanar waveguide resonators. J Appl Phys 109:063915CrossRefGoogle Scholar
  39. Sethian JA, Wiegmann A (2000) Structural boundary design via level-set and immersed interface methods. J Comput Phys 163:489–528MathSciNetCrossRefzbMATHGoogle Scholar
  40. Shahpari M, Thiel DV, Lewis A (2014) An investigation into the Gustafsson limit for small planar antennas using optimization. IEEE Trans Antennas Propag 62:950–955CrossRefGoogle Scholar
  41. Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229:2697–2718MathSciNetCrossRefzbMATHGoogle Scholar
  42. Tichit P-H, Burokur SN, Lustrac AD (2010) Waveguide taper engineering using coordinate transformation technology. Opt Express 18:767–772CrossRefGoogle Scholar
  43. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefzbMATHGoogle Scholar
  44. Whitaker JC (1996) The electronics handbook. CRC-Press, Boca RatonGoogle Scholar
  45. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious energy. Comput Methods Appl Mech Eng 199:2876–2891MathSciNetCrossRefzbMATHGoogle Scholar
  46. Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87:844–868MathSciNetCrossRefzbMATHGoogle Scholar
  47. Yin X, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ (2003) A flexible sigmoid function of determinate growth. Ann Bot 91:361–371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations