Skip to main content
Log in

Complete and atomic Tarski algebras

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Tarski algebras, also known as implication algebras or semi-boolean algebras, are the \(\left\{ \rightarrow \right\} \)-subreducts of Boolean algebras. In this paper we shall introduce and study the complete and atomic Tarski algebras. We shall prove a duality between the complete and atomic Tarski algebras and the class of covering Tarski sets, i.e., structures \(\left<X,{\mathcal {K}}\right>\), where X is a non-empty set and \({\mathcal {K}}\) is non-empty family of subsets of X such that \(\bigcup {\mathcal {K}}=X\). This duality is a generalization of the known duality between sets and complete and atomic Boolean algebras. We shall also analize the case of complete and atomic Tarski algebras endowed with a complete modal operator, and we will prove a duality for these algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, M., Dias Varela, J.P., Zander, M.: Varieties and quasivarieties of monadic tarski algebras. Sientiae Math. Jpn. 56(3), 599–612 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Abbott, J.C.: Semi-boolean algebras. Mater. Vesn. 4(19), 177–198 (1967)

    MathSciNet  MATH  Google Scholar 

  3. Abbott, J.C.: Implicational algebras. Bull. Math. R. Soc. Roum. 11, 3–23 (1967)

    MathSciNet  MATH  Google Scholar 

  4. Busneag, D.: On the maximal deductive systems of a bounded Hilbert algebra. Bull. Math. Soc. Sci. Math. Roum. Tomo 31(79), 1–13 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Celani, S.A.: A note on homomorphism of Hilbert algebras. Int. J. Math. Math. Sci. 29(1), 55–61 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Celani, S.A.: Modal tarski algebras. Rep. Math. Log. 39, 113–126 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Chajda, I., Halaš, P., Zedník, J.: Filters and annihilators in implication algebras. Acta Univ. Palacki. Olomuc. Fac. Rer. Nat. Math. 37, 41–45 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Diego A.: Sur les algébras de Hilbert. Colléction de Logique Mathèmatique, serie A, 21, Gouthier-Villars, Paris (1966)

  9. Givant, S.: Duality theories for Boolean Algebras with Operators. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  10. Givant, S., Halmos, P.: Introduction to Boolean Algebras, Undergraduate Texts in Mathematics. Springer, New York (2009)

    MATH  Google Scholar 

  11. Jarvinen, J.: On the structure of rough approximations. Fund. Inf. 53, 135–153 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Kondo M.: Algebraic approach to generalized rough sets, In: Wang, D., Szczuka, G.M., Düntsch, I., Yao, Y. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC: Lecture Notes in Computer Science, vol. 3641, p. 2005. Springer, Berlin (2005)

  13. Monteiro A.: Sur les algèbres de Heyting symétriques. Portugaliae Mathematica 39, fasc. 1–4 (1980)

  14. Thomason, S.K.: Categories of frames for modal logic. J. Symb. Log. 40, 439–442 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 689176, and the support of the Grant PIP 11220150100412CO of CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Arturo Celani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celani, S.A. Complete and atomic Tarski algebras. Arch. Math. Logic 58, 899–914 (2019). https://doi.org/10.1007/s00153-019-00666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00666-x

Keywords

Mathematics Subject Classification

Navigation