Archive for Mathematical Logic

, Volume 57, Issue 3–4, pp 317–327 | Cite as

On Katětov and Katětov–Blass orders on analytic P-ideals and Borel ideals

  • Hiroshi SakaiEmail author


Minami–Sakai (Arch Math Logic 55(7–8):883–898, 2016) investigated the cofinal types of the Katětov and the Katětov–Blass orders on the family of all \(F_\sigma \) ideals. In this paper we discuss these orders on analytic P-ideals and Borel ideals. We prove the following:
  • The family of all analytic P-ideals has the largest element with respect to the Katětov and the Katětov–Blass orders.

  • The family of all Borel ideals is countably upward directed with respect to the Katětov and the Katětov–Blass orders.

In the course of the proof of the latter result, we also prove that for any analytic ideal \(\mathcal {I}\) there is a Borel ideal \(\mathcal {J}\) with \(\mathcal {I} \subseteq \mathcal {J}\).


Katětov order Analytic P-ideal Borel ideal 

Mathematics Subject Classification

03E04 03E15 54H05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd, Wellesley, MA (1995)zbMATHGoogle Scholar
  2. 2.
    Hrušák, M.: Combinatorics of Filters and Ideals, Set Theory and Its Applications, Contemporary Mathematics, vol. 533, pp. 29–69. American Mathematical Society, Providence, RI (2011)zbMATHGoogle Scholar
  3. 3.
    Hrušák, M., Meza Alcántara, D.: Universal submeasures and ideals. Questions Answers Gen. Topology 31(2), 65–69 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hrušák, M., Meza Alcántara, D., Minami, H.: Pair-splitting, pair-reaping and cardinal invariants of \(F_\sigma \)-ideals. J. Symb. Logic 75(2), 661–677 (2010)Google Scholar
  5. 5.
    Katětov, M.: Products of filters. Comment. Math. Univ. Carol. 9, 173–189 (1968)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Katětov, M.: On Descriptive Classes of Functions, Theory of Sets and Topology (in Honour of Felix Hausdorff, 1868–1942), pp. 265–278. VEB Deutsch, Verlag Wissensch, Berlin (1972)Google Scholar
  7. 7.
    Mathias, A.R.D.: A Remark on Rare Filters, Infinite and Finite Sets (Colloq., Keszthely, 1973; Dedicated to P. Erdös on His 60th Birthday), Colloquia Mathematica Societatis Janos Bolyai, vol. 10, pp. 1095–1097. North-Holland, Amsterdam (1975)Google Scholar
  8. 8.
    Mazur, K.: \(F_\sigma \)-ideals and \(\omega _1 \omega _1^*\)-gaps in \(\cal{P} ( \omega ) / I\). Fund. Math. 138(2), 103–111 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Meza Alcántara, D.: Ideals and Filters on Countable Sets, Ph.D. thesis, UNAM México (2009)Google Scholar
  10. 10.
    Minami, H., Sakai, H.: Katětov and Katětov–Blass orders on \(F_\sigma \)-ideals. Arch. Math. Logic 55(7–8), 883–898 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Solecki, S.: Analytic ideals and their applications. Ann. Pure Appl. Logic 99(1–3), 51–72 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Talagrand, M.: Compacts de fonctions mesurables et filtres non mesurables. Stud. Math. 67(1), 13–43 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Kobe UniversityKobeJapan

Personalised recommendations