Archive for Mathematical Logic

, Volume 57, Issue 3–4, pp 203–237 | Cite as

Interpretable groups in Mann pairs

  • Haydar Göral


In this paper, we study an algebraically closed field \(\Omega \) expanded by two unary predicates denoting an algebraically closed proper subfield k and a multiplicative subgroup \(\Gamma \). This will be a proper expansion of algebraically closed field with a group satisfying the Mann property, and also pairs of algebraically closed fields. We first characterize the independence in the triple \((\Omega , k, \Gamma )\). This enables us to characterize the interpretable groups when \(\Gamma \) is divisible. Every interpretable group H in \((\Omega ,k, \Gamma )\) is, up to isogeny, an extension of a direct sum of k-rational points of an algebraic group defined over k and an interpretable abelian group in \(\Gamma \) by an interpretable group N, which is the quotient of an algebraic group by a subgroup \(N_1\), which in turn is isogenous to a cartesian product of k-rational points of an algebraic group defined over k and an interpretable abelian group in \(\Gamma \).


Model theory Stability Mann pairs 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben Yaacov, I., Pillay, A., Vassilliev, E.: Lovely pairs of models. Ann. Pure Appl. Log. 122, 235–261 (2003)Google Scholar
  2. 2.
    Blossier, T., Martin-Pizarro, A.: De Beaux Groupes. Confl. Math. 6, 3–13 (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blossier, T., Martin-Pizarro, A., Wagner, F.: Géométries relatives. J. Eur. Math. Soc. 17, 229–258 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Evertse, J.H., Schlickewei, H.P., Schmidt, W.M.: Linear equations in variables which lie in a multiplicative group. Ann. Math. 155, 807–836 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fried, M.D., Jarden, M.: Field Arithmetic. A Series of Modern Surveys in Mathematics. Springer, Berlin (2008)Google Scholar
  6. 6.
    Göral, H.: Model theory of fields and heights. Ph.D. Thesis, Lyon (2015)Google Scholar
  7. 7.
    Göral, H.: Tame expansions of \(\omega \)-stable theories and definable groups. Notre Dame J. Form. Log. (accepted)Google Scholar
  8. 8.
    Hrushovski, E.: Contributions to stable model theory. Ph.D. Thesis, Berkeley (1986)Google Scholar
  9. 9.
    Hrushovski, E., Pillay, A.: Weakly normal groups. Stud. Log. Found. Math. 122, 233–244 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kowalski, P., Pillay, A.: A note on groups definable in difference fields. Proc. AMS (1) 130, 205–212 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lang, S.: Algebra, Revised third edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  12. 12.
    Mann, H.: On linear relations between roots of unity. Mathematika 12, 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marker, D.: Model Theory: An Introduction. Springer, New York (2002)zbMATHGoogle Scholar
  14. 14.
    Pillay, A.: Imaginaries in pairs of algebraically closed fields. Ann. Pure Appl. Log. 146, 13–20 (2007)Google Scholar
  15. 15.
    Pillay, A.: Geometric Stability Theory, Oxford Logic Guides, no. 33. Oxford University Press, Oxford (1996)Google Scholar
  16. 16.
    Poizat, B.: Groupes Stables (1987). Traduction Anglaise: Stable groups. Mathematical Surveys and Monographs, 87. Amer. Math. Soc., Providence (2001)Google Scholar
  17. 17.
    Poizat, B.: Paires de structures stables. JSL 48, 239–249 (1983)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tent, K., Ziegler, M.: A Course in Model Theory: Lecture Notes in Logic. ASL (2012)Google Scholar
  19. 19.
    van den Dries, L., Günaydın, A.: The fields of real and complex numbers with a small multiplicative group. Proc. Lond. Math. Soc. (3) 93, 43–81 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    van den Dries, L., Günaydın, A.: Mann pairs. Trans. Am. Math. Soc. 362, 2393–2414 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    van den Dries, L., Günaydın, A.: Definable sets in Mann Pairs. Commun. Algebra 39, 2752–2763 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wagner, F.: Stable Groups. Lecture Notes of the London Mathematical Society 240. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Wagner, F.: Simple Theories. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsKoç UniversitySarıyerTurkey

Personalised recommendations