Skip to main content
Log in

Age estimation in facial images through transfer learning

  • Short Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper was aimed to address the problem of image-based human age estimation. It has the following main contributions. First, we provide a comparison of three hand-crafted image features and five deep convolutional neural networks (DCNNs). Secondly, we show that the use of pre-trained DCNNs as feature extractors can transfer the knowledge of DCNNs to new datasets and domains that were not necessarily addressed in the training phase. This is achieved by only retraining a shallow regressor over the deep features. Thirdly, we provide a cross-database evaluation involving biological and apparent ages. The paper shows that transfer learning allows the use of pre-trained DCNNs regardless of the type of ages (apparent or biological) that is adopted in DCNN training. The experiments are carried out on three public databases: MORPH, PAL, and Chalearn2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. for original and aligned MORPH images and PAL images, respectively.

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  2. Bekhouche, S., Ouafi, A., Taleb-Ahmed, A., Hadid, A., Benlamoudi, A.: Facial age estimation using BSIF and LBP. In: International Conference on Electrical Engineering (2014)

  3. Bereta, M., Karczmarek, P., Pedrycz, W., Reformat, M.: Local descriptors in application to the aging problem in face recognition. Pattern Recognit. 46, 2634–2646 (2013)

    Article  Google Scholar 

  4. Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 585–592 (2011)

  5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (2014)

  6. Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: A comparative study of local feature extraction for age estimation. In: International Conference on Control Automation Robotics Vision, pp. 1280–1284 (2010)

  7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)

  9. de Jong, S.: Simpls: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18(3), 251–263 (1993)

    Article  Google Scholar 

  10. Escalera, S., Torres, M., Martinez, B., Baró, X., Escalante, H.J., et al.: Chalearn looking at people and faces of the world: face analysis workshop and challenge 2016. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition Workshops (2016)

  11. Fernandez, C., Huerta, I., Prati, A.: A comparative evaluation of regression learning algorithms for facial age estimation. In: FFER in Conjunction with IEEE Int. Conf. on Pattern Recognition (2014)

  12. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimed. 10(4), 578–584 (2008)

    Article  Google Scholar 

  13. Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  14. Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  15. Gunay, A., Nabiyev, V.V.: Automatic detection of anthropometric features from facial images. In: 2007 IEEE 15th Signal Processing and Communications Applications, pp. 1–4 (2007)

  16. Günay, A., Nabiyev, V.V.: Age estimation based on hybrid features of facial images. In: Information Sciences and Systems 2015: 30th International Symposium on Computer and Information Sciences (ISCIS 2015), pp. 295–304. Springer, Cham (2016)

  17. Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–664 (2011)

  18. Guo, G., Mu, G.: Joint estimation of age, gender and ethnicity: CCA vs. PLS. In: IEEE International Conference and Workshop on Automatic Face and Gesture Recognition, pp. 1–6 (2013)

  19. Guo, G., Mu, G.: A framework for joint estimation of age, gender and ethnicity on a large database. Image Vis. Comput. 32(10), 761–770 (2014)

    Article  Google Scholar 

  20. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: Computer Vision Pattern Recognition (2009)

  21. Han, H., Jain, A.K.: Age, gender and race estimation from unconstrained face images. Technical Report MSU-CSE-14-5, Department of Computer Science, Michigan State University, East Lansing, Michigan (2014)

  22. Han, H., Otto, C., Liu, X., Jain, A.K.: Demographic estimation from face images: human vs. machine performance. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1148–1161 (2015)

    Article  Google Scholar 

  23. Huerta, I., Fernandez, C., Segura, C., Hernando, J., Prati, A.: A deep analysis on age estimation. Pattern Recognit. Lett. 68(2), 239–249 (2015)

    Article  Google Scholar 

  24. Kannala, J., Rahtu, E.: BSIF: binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366 (2012)

  25. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)

  26. Kwon, Y.H., da Vitoria Lobo, N.: Age classification from facial images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 762–767 (1994)

  27. Levi, G., Hassncer, T.: Age and gender classification using convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 34–42 (2015)

  28. Luu, K., Seshadri, K., Savvides, M., Bui, T.D., Suen, C.Y.: Contourlet appearance model for facial age estimation. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8 (2011)

  29. Martin, A.: A comparison of nine pls1 algorithms. J. Chemom. 23(10), 518–529 (2008)

    Google Scholar 

  30. Minear, M., Park, D.C.: A lifespan database of adult facial stimuli. Behav. Res. Methods Instrum. Comput. 36(4), 630–633 (2004)

    Article  Google Scholar 

  31. Nguyen, D.T., Cho, S.R., Pham, T.D., Park, K.R.: Human age estimation method robust to camera sensor and/or face movement. Sensors 15(9), 21898–21930 (2015)

    Article  Google Scholar 

  32. Nguyen, D.T., Cho, S.R., Shin, K.Y., Bang, J.W., Park, K.R.: Comparative study of human age estimation with or without pre-classification of gender and facial expression. Sci. World J. 2014, 15 (2014)

    Google Scholar 

  33. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference, vol. 1, p. 6 (2015)

  34. Ranjan, R., Zhou, S., Chen, J.C., Kumar, A., Alavi, A., Patel, V.M., Chellappa, R.: Unconstrained age estimation with deep convolutional neural networks. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 351–359 (2015)

  35. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, 2006, pp. 341–345. FGR 2006 (2006)

  36. Rosipal, R., Kramer, N.: Overview and recent advances in partial least squares. In: Subspace, Latent Structure and Feature Selection Techniques, pp. 34–51. Springer (2006)

  37. Rothe, R., Timofte, R., Gool, L.V.: DEX: deep expectation of apparent age from a single image. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2015)

  38. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. (IJCV) 126, 144–157 (2016)

    Article  MathSciNet  Google Scholar 

  39. Shen, W., Guo, Y., Wang, Y., Zhao, K., Wang, B., Yuille, A.: Deep regression forests for age estimation (2017). https://arxiv.org/pdf/1712.07195.pdf

  40. Shen, W., Zhao, K., Guo, Y., Yuille, A.: Label distribution learning forests. In: NIPS (2017)

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  42. Wang, X., Guo, R., Kambhamettu, C.: Deeply-learned feature for age estimation. In: IEEE Workshop on Applications of Computer Vision (2015)

  43. Zhang, Y., Li, L., Li, C., Cheng, C.: Quantifying facial age by posterior of age comparisons. In: BMVC (2017)

Download references

Acknowledgements

The authors gratefully acknowledge the NVIDIA Corporation for the donation of the Titan X used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dornaika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dornaika, F., Arganda-Carreras, I. & Belver, C. Age estimation in facial images through transfer learning. Machine Vision and Applications 30, 177–187 (2019). https://doi.org/10.1007/s00138-018-0976-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0976-1

Keywords

Navigation