Advertisement

Machine Vision and Applications

, Volume 29, Issue 4, pp 667–676 | Cite as

Vision-based real estate price estimation

  • Omid Poursaeed
  • Tomáš Matera
  • Serge Belongie
Original Paper

Abstract

Since the advent of online real estate database companies like Zillow, Trulia and Redfin, the problem of automatic estimation of market values for houses has received considerable attention. Several real estate websites provide such estimates using a proprietary formula. Although these estimates are often close to the actual sale prices, in some cases they are highly inaccurate. One of the key factors that affects the value of a house is its interior and exterior appearance, which is not considered in calculating automatic value estimates. In this paper, we evaluate the impact of visual characteristics of a house on its market value. Using deep convolutional neural networks on a large dataset of photos of home interiors and exteriors, we develop a method for estimating the luxury level of real estate photos. We also develop a novel framework for automated value assessment using the above photos in addition to home characteristics including size, offered price and number of bedrooms. Finally, by applying our proposed method for price estimation to a new dataset of real estate photos and metadata, we show that it outperforms Zillow’s estimates.

Keywords

Computer vision Real estate Automated valuation method Convolutional neural networks Crowdsourcing 

References

  1. 1.
    Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. ACM Trans. Gr. (TOG) 34(4), 98 (2015)Google Scholar
  2. 2.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  3. 3.
    Malpezzi, S.: Hedonic pricing models: a selective and applied review. In: Housing Economics and Public Policy, pp. 67–89 (2003). https://doi.org/10.1002/9780470690680.ch5
  4. 4.
    Pagourtzi, E., et al.: Real estate appraisal: a review of valuation methods. J. Prop. Invest. Financ. 21(4), 383–401 (2003)CrossRefGoogle Scholar
  5. 5.
    Benjamin, J., Randall, G., Sirmans, C.F.: Mass appraisal: an introduction to multiple regression analysis for real estate valuation. J. Real Estate Pract. Educ. 7(1), 65–77 (2004)Google Scholar
  6. 6.
    Van Der Maaten, L., Weinberger, K.: Stochastic triplet embedding. In: International Workshop on Machine Learning for Signal Processing (MLSP), 2012 IEEE, pp. 1–6. IEEE (2012)Google Scholar
  7. 7.
    Hollas, D.R., Rutherford, R.C., Thomson, T.A.: Zillow’s estimates of single-family housing values. Apprais. J. 78(1), 26–32 (2010)Google Scholar
  8. 8.
    McGreal, S., Adair, A., McBurney, D., Patterson, D.: Neural networks: the prediction of residential values. J. Prop. Val. Invest. 16(1), 57–70 (1998)CrossRefGoogle Scholar
  9. 9.
    Bagnoli, C., Smith, H.: The theory of fuzz logic and its application to real estate valuation. J. Real Estate Res. 16(2), 169–200 (1998)Google Scholar
  10. 10.
    Byrne, P.: Fuzzy analysis: a vague way of dealing with uncertainty in real estate analysis? J. Prop. Val. Invest. 13(3), 22–41 (1995)CrossRefGoogle Scholar
  11. 11.
    Wilber, M.J., Kwak, I.S., Belongie, S.J.: Cost-effective hits for relative similarity comparisons. In: 2nd AAAI Conference on Human Computation and Crowdsourcing (2014)Google Scholar
  12. 12.
    Ordonez, V., Jagadeesh, V., Di, W., Bhardwaj, A., Piramuthu, R.: Furniture-geek: understanding fine-grained furniture attributes from freely associated text and tags. In: IEEE Winter Conference on Applications of Computer Vision (WACV), 2014, pp. 317–324. IEEE (2014)Google Scholar
  13. 13.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  14. 14.
    Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kusan, H., Aytekin, O., Ozdemir, I.: The use of fuzzy logic in predicting house selling price. Expert Syst. Appl. 37(3), 1808–1813 (2010)CrossRefGoogle Scholar
  16. 16.
    Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3479–3487 (2015)Google Scholar
  17. 17.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:1311.3715 (2013)
  19. 19.
    Worzala, E., Lenk, M., Silva, A.: An exploration of neural networks and its application to real estate valuation. J. Real Estate Res. 10(2), 185–201 (1995)Google Scholar
  20. 20.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  21. 21.
    LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRefGoogle Scholar
  22. 22.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  23. 23.
    Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248-255. IEEE (2009)Google Scholar
  24. 24.
    LeCun, Y.A., Bottou, L., Orr, G.B., Muller, K.: Efficient backprop. In: Neural Networks: Tricks of the Trade, pp. 9–48. Springer, Berlin (2012)Google Scholar
  25. 25.
    Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)Google Scholar
  26. 26.
    Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)
  27. 27.
    Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)
  28. 28.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)Google Scholar
  29. 29.
    Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)Google Scholar
  30. 30.
    Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)
  31. 31.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  32. 32.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)Google Scholar
  33. 33.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer vision and pattern recognition, 2006, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  35. 35.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  36. 36.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  37. 37.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). arXiv preprint arXiv:1511.07122
  38. 38.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)Google Scholar
  39. 39.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  40. 40.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  41. 41.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  42. 42.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  43. 43.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv preprint arXiv:1511.06434
  44. 44.
    Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., Belongie, S.: Stacked generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, p. 4 (2017)Google Scholar
  45. 45.
    Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation (2017). arXiv preprint arXiv:1710.10196
  46. 46.
    Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations (2017). arXiv preprint arXiv:1712.02328

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringCornell UniversityIthacaUSA
  2. 2.Cornell TechNew YorkUSA
  3. 3.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations