Rationale des kinematischen Alignments

Rationale of kinematic alignment

Zusammenfassung

Hintergrund

Das kinematische Alignment ist eine Philosophie zur individuellen Knieprothesenimplantation in einer dreidimensionalen Betrachtung. Der Kern des Konzeptes ist das Verständnis der femoralen Flexions-Extensions-Achse als Zentrum eines Zylinders in den posterioren Kondylen. Diese Achse definiert das Knie dreidimensional über den gesamten Bewegungsablauf. Die Tibia folgt dem Femur, ist in Extension und Flexion auf das Knie balanciert, zeigt in Flexion und tiefer Flexion dann individuelle Laxitäten, häufig mit einer asymmetrisch lateral laxeren Einstellung als medial.

Auswirkungen

Als Konsequenz zeigt sich eine konstitutionelle Beinachse, die von der klassischen mechanischen Achse abweicht. Als wesentliche weitere Konsequenz wird die natürliche Gelenklinie exakt rekonstruiert. Dieses ergibt erhebliche Vorteile, da die natürliche Stabilität des Knies wiederherstellt wird und gleichzeitig eine natürliche patellare Gleitkinematik erlaubt wird. Aktuell ist nicht gänzlich geklärt, inwieweit sich Konsequenzen aus extremer Achseinstellung und Interaktion mit Gelenklinienabweichungen ergeben. Das Polyethylen als tribologisches Material und das Implantat-Knochen-Interface sind gegenüber Überlastungen vulnerabel und bedeuten möglicherweise verkürzte Standzeiten. Der menschliche Organismus verfügt jedoch offensichtlich über dynamische Mechanismen zur Reduktion des Adduktorenmomentes mit Anpassung des Gangbildes. Klinische Erfahrungen über 10 Jahre und multiple randomisierte Studien zeigen neben dem deutlichen funktionellen Vorteil der Methode keine Hinweise auf frühzeitiges Versagen und lassen die vorsichtige Verbreitung der Methode als sinnvoll erscheinen.

Abstract

Background

Kinematic alignment is a philosophy for individual knee prosthesis implantation in a three-dimensional view. The key of the concept is to understand the femoral flexion-extension axis as the centre of a cylinder within the posterior condyles. This axis defines the knee in three dimensions over the entire range of motion. The tibia follows the femur, is balanced on the knee in extension and flexion, and shows individual laxities in flexion and deep flexion.

Impacts

As a consequence, limbs will be reconstructed along their constitutional leg axis, which in most patients is different to a straight hip-knee-ankle centre axis. The method aims at perfectly reconstructing the natural joint lines, which in many patients leads to the natural oblique joint lines. This results in considerable advantages, as the natural stability of the knee is restored, and native patella kinematics are maintained. From a static view, polyethylene and the implant-bone interface may be vulnerable to mechanical overloading due to altered adductor moments. However, a growing body of evidence shows that naturally oriented knee joints show a more balanced loading pattern. Moreover, dynamic gait patterns actually show the mechanism of even reduced knee adductor moments, explaining the clinical results of up to 10 years follow up.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Almaawi AM, Hutt JRB, Masse V, Lavigne M, Vendittoli P‑A (2017) The impact of mechanical and restricted kinematic alignment on knee anatomy in total knee arthroplasty. J Arthroplasty 32:2133–2140. https://doi.org/10.1016/j.arth.2017.02.028

    Article  PubMed  Google Scholar 

  2. 2.

    Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470:45–53. https://doi.org/10.1007/s11999-011-1936-5

    Article  Google Scholar 

  3. 3.

    Blacharski PA, Somerset JH, Murray DG (1975) A three-dimensional study of the kinematics of the human knee. J Biomech 8:375–384. https://doi.org/10.1016/0021-9290(75)90073-1

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Braune W, Fischer O (1891) Die Bewegungen des Kniegelenkes nach einer neuen Methode am lebenden Menschen gemessen. Königl Sächsischen Ges Wiss

  5. 5.

    Bugnion E (1892) Le Mechanisme du Genou. Extrait du Recueil inaugural de l’Univ Lausanne

    Google Scholar 

  6. 6.

    Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M (2017) PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 25:1743–1748. https://doi.org/10.1007/s00167-016-4136-8

    Article  Google Scholar 

  7. 7.

    Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199811000-00016

    Article  PubMed  Google Scholar 

  8. 8.

    Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J 96-B:907–913. https://doi.org/10.1302/0301-620X.96B7.32812

    CAS  Article  Google Scholar 

  9. 9.

    Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Rubinstein D, Humphries S (2003) Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II. J Bone Joint Surg Am 85-A(Suppl 4):97–104. https://doi.org/10.2106/00004623-200300004-00012

    Article  Google Scholar 

  10. 10.

    Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Flannery NMP (2005) Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 87(Suppl 2):71–80. https://doi.org/10.2106/JBJS.E.00440

    Article  Google Scholar 

  11. 11.

    Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24:39–43. https://doi.org/10.1016/j.arth.2009.04.034

    Article  Google Scholar 

  12. 12.

    Fick R (1911) Handbuch der Anatomie und Mechanik der Gelenke. Gustav von Fischer, Jena

    Google Scholar 

  13. 13.

    Gibon E, Goodman MJ, Goodman SB (2017) Patient satisfaction after total knee Arthroplasty: a realistic or imaginary goal? Orthop Clin North Am 48:421–431. https://doi.org/10.1016/j.ocl.2017.06.001

    Article  PubMed  Google Scholar 

  14. 14.

    Halder A, Kutzner I, Graichen F, Heinlein B, Beier A, Bergmann G (2012) Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. J Bone Joint Surg Am 94:1023–1029. https://doi.org/10.2106/JBJS.K.00927

    Article  PubMed  Google Scholar 

  15. 15.

    Hirschmann MT, Hess S, Behrend H, Amsler F, Leclercq V, Moser LB (2019) Phenotyping of hip-knee-ankle angle in young non-osteoarthritic knees provides better understanding of native alignment variability. Knee Surg Sports Traumatol Arthrosc 27:1378–1384. https://doi.org/10.1007/s00167-019-05507-1

    Article  PubMed  Google Scholar 

  16. 16.

    Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Google Scholar 

  17. 17.

    Howell S, Howell S, Hull M (2010) Assessment of the radii of the medial and lateral femoral condyles in Varus and Valgus knees with osteoarthritis. J Bone Joint Surg Am 92:98–104. https://doi.org/10.2106/JBJS.H.01566

    Article  Google Scholar 

  18. 18.

    Howell SM, Hull ML, Mahfouz MR (2017) Kinematically aligned total knee Arthroplasty. Elsevier, Amsterdam

    Google Scholar 

  19. 19.

    Howell SM, Shelton TJ, Hull ML (2018) Implant survival and function ten years after kinematically aligned total knee Arthroplasty. J Arthroplasty 33:3678–3684. https://doi.org/10.1016/j.arth.2018.07.020

    Article  PubMed  Google Scholar 

  20. 20.

    Innocenti B, Bellemans J, Catani F (2016) Deviations from optimal alignment in TKA: is there a biomechanical difference between femoral or tibial component alignment? J Arthroplasty 31:295–301. https://doi.org/10.1016/j.arth.2015.07.038

    Article  PubMed  Google Scholar 

  21. 21.

    Insall J, Ranawat CS, Scott WN, Walker P (1976) Total condylar knee replacment: preliminary report. Clin Orthop Relat Res 120:149–154

    Google Scholar 

  22. 22.

    Kapandji AI (2011) Lower limb. Physiology of the joints, Bd. 2. E.&S. Livingstone Ltd, Edinburgh and London

    Google Scholar 

  23. 23.

    Key S, Scott G, Stammers JG, Freeman MAR, Pinskerova V, Field RE, Skinner J, Banks SA (2019) Does lateral lift-off occur in static and dynamic activity in a medially spherical total knee arthroplasty? A pulsed-fluoroscopic investigation. Bone Joint Res 8:207–215. https://doi.org/10.1302/2046-3758.85.BJR-2018-0237.R1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lozano R, Campanelli V, Howell S, Hull M (2019) Kinematic alignment more closely restores the groove location and the sulcus angle of the native trochlea than mechanical alignment: implications for prosthetic design. Knee Surg Sports Traumatol Arthrosc 27:1504–1513. https://doi.org/10.1007/s00167-018-5220-z

    Article  Google Scholar 

  25. 25.

    Matsuda S, Matsuda H, Miyagi T, Sasaki K, Iwamoto Y, Miura H (1998) Femoral condyle geometry in the normal and varus knee. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199804000-00022

    Article  PubMed  Google Scholar 

  26. 26.

    Mikulicz J (2003) Die seitlichen Verkrümmungen am Knie und deren Heilungsmethoden. Kozuschek W. Johann von Mikulicz-Radecki 1850-1905. Mitbegründer der modernen Chirurgie. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego. Arch Klin Chir 23(561–629):671–884

    Google Scholar 

  27. 27.

    Nakamura S, Tian Y, Tanaka Y, Kuriyama S, Ito H, Furu M, Matsuda S (2017) The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia: a case study for varus knee. Bone Joint Res 6:43–51. https://doi.org/10.1302/2046-3758.61.BJR-2016-0090.R1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nedopil AJ, Howell SM, Hull ML (2016) Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop Clin North Am 47:41–50. https://doi.org/10.1016/j.ocl.2015.08.006

    Article  Google Scholar 

  29. 29.

    Niki Y, Nagura T, Nagai K, Kobayashi S, Harato K (2018) Kinematically aligned total knee arthroplasty reduces knee adduction moment more than mechanically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 26:1629–1635. https://doi.org/10.1007/s00167-017-4788-z

    Article  Google Scholar 

  30. 30.

    Paley D (2002) Principles of deformity correction. Springer, Heidelberg

    Google Scholar 

  31. 31.

    Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am 92:2143–2149. https://doi.org/10.2106/JBJS.I.01398

    Article  Google Scholar 

  32. 32.

    Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MAR (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86:925–931. https://doi.org/10.1302/0301-620x.86b6.14589

    CAS  Article  Google Scholar 

  33. 33.

    Rand JA, Coventry MB (1988) Ten-year evaluation of geometric total knee arthroplasty. Clin Orthop Relat Res 232:168–173

    Google Scholar 

  34. 34.

    Rivière C, Dhaif F, Shah H, Ali A, Auvinet E, Aframian A, Cobb J, Howell S, Harris S (2018) Kinematic alignment of current TKA implants does not restore the native trochlear anatomy. Orthop Traumatol Surg Res 104:983–995. https://doi.org/10.1016/j.otsr.2018.05.010

    Article  Google Scholar 

  35. 35.

    Howell SM, Hull ML, Mahfouz MR (2018) Kinematically aligned total knee Arthroplasty. In: Scott WN (Hrsg) Insall & Scott Surgery of the Knee. Kapitel 160, Seite 1786 (https://www.us.elsevierhealth.com/insall-scott-surgery-of-the-knee-2-volume-set-9780323400466.html#panel2)

    Google Scholar 

  36. 36.

    Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ (2005) The variability of femoral rotational alignment in total knee arthroplasty. J Bone Joint Surg Am 87:2276–2280. https://doi.org/10.2106/JBJS.D.02945

    Article  PubMed  Google Scholar 

  37. 37.

    Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89:477–480. https://doi.org/10.1302/0301-620X.89B4.18094

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tew M, Waugh W (1985) Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg Br 67:551–556

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. H. Windhagen.

Ethics declarations

Interessenkonflikt

H. Windhagen gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Windhagen, H. Rationale des kinematischen Alignments. Orthopäde 49, 570–577 (2020). https://doi.org/10.1007/s00132-020-03937-1

Download citation

Schlüsselwörter

  • Femur
  • Gang
  • Kinematik
  • Tibia
  • Totalkniegelenksersatz

Keywords

  • Femur
  • Gait
  • Kinematics
  • Tibia
  • Total knee replacement