Advertisement

Der Orthopäde

, Volume 47, Issue 6, pp 474–482 | Cite as

Die zervikale spondylotische Myelopathie

Indikationsstellung für eine chirurgische Therapie
  • W. Pepke
  • H. Almansour
  • M. Richter
  • M. Akbar
Leitthema

Zusammenfassung

Hintergrund

Die Pathogenese einer zervikalen spondylotischen Myelopathie (ZSM) ist oft multifaktoriell. Aus diesem Grund bedarf die Therapie dieser Erkrankung einer sehr differenzierten chirurgischen Herangehensweise, um die auslösende Pathologie adäquat zu adressieren. Zudem wird in der Literatur das ideale Timing zur Durchführung einer Operation kontrovers diskutiert.

Ziel der Arbeit

Ziel dieser Übersichtsarbeit ist, die auf die Wahl der therapeutischen Strategie Einfluss nehmenden Faktoren zu benennen und zu versuchen, diese in einem Algorithmus als Entscheidungshilfe für die therapeutischen Strategien zusammenzufassen. Es soll versucht werden, die Schwellenwerte für die Indikation einer chirurgischen Therapie anhand der publizierten Literatur zu definieren.

Material und Methoden

Anhand der publizierten Daten werden die Einflussfaktoren für die Prognose der ZSM herausgearbeitet. Damit soll die Empfehlung über den bestmöglichen Zeitpunkt der chirurgischen Therapie definiert werden. Im Weiteren werden die chirurgischen Therapieansätze ausgearbeitet.

Ergebnisse

Zu den prognostisch ungünstigen Faktoren für die Verschlechterung der ZMS gehören in erster Linie die zirkumferenzielle Rückenmarkkompression, ein kräftiges und scharf begrenztes Myelopathiesignal in der T2-gewichteten MRT-Sequenz und die segmentale Instabilität auf Höhe der Myelopathie. Die wichtigsten Faktoren, die eine Rolle in der Entscheidung über das operative Vorgehen spielen, sind das sagittale Profil der HWS, die Ausdehnung der Myelopathie, das Ausmaß der Stenose und die Lokalisation der die Myelopathie auslösenden Pathologie. Auch zuvor bestehende Nackenschmerzen und Voroperationen dürfen nicht außer Acht gelassen werden und müssen im Rahmen der Indikationsstellung abgefragt werden.

Diskussion

Anhand der durchgeführten Literaturrecherche konnte ein therapeutischer Algorithmus erstellt werden, der im klinischen Alltag als Entscheidungshilfe dienen soll.

Schlüsselwörter

Nackenschmerzen Osteophyten, spinale Rückenmarkkompression Rückenmarkerkrankungen Zervikalwirbel 

Abkürzungen

AO

Arbeitsgemeinschaft für Osteosynthesefragen

BS

Bandscheibe

HWK

Halswirbelkörper

HWS

Halswirbelsäule

JOA

Japanese Orthopaedic Association

MEP

Motorisch evozierte Potenziale

mJOA

Modifizierter Japanese Orthopaedic Association Score

MRT

Magnetresonanztomographie

NDI

Neck Disability Index

PEEK

Polyetheretherketon

SF-36

Short Form 36

SSEP

Somatosensibel evozierte Potenziale

ZSM

Zervikale spondylotische Myelopathie

Spondylotic cervical myelopathy

Indication of surgical treatment

Abstract

Background

The pathogenesis of cervical spondylotic myelopathy (CSM) is often multifactorial. Hence, the treatment of this disease requires a differentiated surgical approach in order to adequately address the underlying pathology.

Purpose

The aim of this review is to identify factors that influence the choice of treatment strategy and to summarize them in an algorithm that serves as a decision aid in choosing the optimal indication for surgical treatment. An attempt is made to define the threshold values for the indication of surgical treatment and to discuss the ideal timing for performing surgery.

Materials and methods

On the basis of the published data, the influencing factors on the prognosis of CSM, as well as surgical approaches are discussed.

Results

Circumferential spinal cord compression, a sharply defined myelopathy signal in the T2-weighted MRI sequence, and segmental instability at the level of the myelopathy signal mean an unfavorable prognosis for the worsening of CSM. The most important factors that influence the choice of the surgical access point are the sagittal profile of the cervical spine, the extent of myelopathy, the extent of stenosis, and the location of the myelopathy-inducing pathology. Previously existing neck pain and prior cervical surgery must also be considered.

Discussion

On the basis of the research carried out, we developed an algorithm that could serve as an aid in choosing the right treatment in the setting of cervical spondylotic myelopathy.

Keywords

Neck ache Osteophytosis, spinal Spinal cord compression Spinal cord disorders Cervical vertebrae 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Pepke, H. Almansour, M. Richter und M. Akbar geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ (2001) Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology 221(3):789–794CrossRefPubMedGoogle Scholar
  2. 2.
    Suri A, Chabbra RP, Mehta VS, Gaikwad S, Pandey RM (2003) Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 3(1):33–45CrossRefPubMedGoogle Scholar
  3. 3.
    Kalupahana NS, Weerasinghe VS, Dangahadeniya U, Senanayake N (2008) Abnormal parameters of magnetically evoked motor-evoked potentials in patients with cervical spondylotic myelopathy. Spine J 8(4):645–649CrossRefPubMedGoogle Scholar
  4. 4.
    Obermann M, Gasser T (2002) Spinale Engesyndrome. In: Brandt T, Dichgans J, Diener HC (Hrsg) Therapie und Verlauf neurologischer Erkrankungen, 4. Aufl. Kohlhammer, StuttgartGoogle Scholar
  5. 5.
    Brain WR, Northfield D, Wilkinson M (1952) The neurological manifestations of cervical spondylosis. Brain 75(2):187–225CrossRefPubMedGoogle Scholar
  6. 6.
    LaRocca H (1988) Cervical spondylotic myelopathy: natural history. Spine 13(7):854–855CrossRefPubMedGoogle Scholar
  7. 7.
    Karadimas SK, Gatzounis G, Fehlings MG (2015) Pathobiology of cervical spondylotic myelopathy. Eur Spine J 24(Suppl 2):132–138CrossRefPubMedGoogle Scholar
  8. 8.
    Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG (2015) Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine 40(12):E675–E693CrossRefPubMedGoogle Scholar
  9. 9.
    Kalsi-Ryan S, Karadimas SK, Fehlings MG (2013) Cervical spondylotic myelopathy: the clinical phenomenon and the current pathobiology of an increasingly prevalent and devastating disorder. Neuroscientist 19(4):409–421CrossRefPubMedGoogle Scholar
  10. 10.
    Emery SE (2001) Cervical spondylotic myelopathy: diagnosis and treatment. J Am Acad Orthop Surg 9(6):376–388CrossRefPubMedGoogle Scholar
  11. 11.
    Bakhsheshian J, Mehta VA, Liu JC (2017) Current diagnosis and management of cervical spondylotic myelopathy. Global Spine J 7(6):572–586CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nouri A, Martin AR, Mikulis D, Fehlings MG (2016) Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg Focus 40(6):E5CrossRefPubMedGoogle Scholar
  13. 13.
    Xu N, Wang S, Yuan H, Liu X, Liu Z (2017) Does dynamic supine magnetic resonance imaging improve the diagnostic accuracy of cervical spondylotic myelopathy? A review of the current evidence. World Neurosurg 100:474–479CrossRefPubMedGoogle Scholar
  14. 14.
    Fehlings MG, Wilson JR, Yoon ST, Rhee JM, Shamji MF, Lawrence BD (2013) Symptomatic progression of cervical myelopathy and the role of nonsurgical management: a consensus statement. Spine 38(22 Suppl 1):S19–S20PubMedGoogle Scholar
  15. 15.
    Karadimas SK, Erwin WM, Ely CG, Dettori JR, Fehlings MG (2013) Pathophysiology and natural history of cervical spondylotic myelopathy. Spine 38(22 Suppl 1):S21–S36CrossRefPubMedGoogle Scholar
  16. 16.
    Matz PG, Anderson PA, Holly LT, Groff MW, Heary RF, Kaiser MG et al (2009) The natural history of cervical spondylotic myelopathy. J Neurosurg Spine 11(2):104–111CrossRefPubMedGoogle Scholar
  17. 17.
    Sadasivan KK, Reddy RP, Albright JA (1993) The natural history of cervical spondylotic myelopathy. Yale J Biol Med 66(3):235–242PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chien A, Lai DM, Cheng CH, Wang SF, Hsu WL, Wang JL (2015) Responsiveness of the Chinese versions of the Japanese Orthopaedic Association cervical myelopathy evaluation questionnaire and neck disability index in postoperative patients with cervical spondylotic myelopathy. Spine 40(17):1315–1321CrossRefPubMedGoogle Scholar
  19. 19.
    Yonenobu K, Abumi K, Nagata K, Taketomi E, Ueyama K (2001) Interobserver and intraobserver reliability of the japanese orthopaedic association scoring system for evaluation of cervical compression myelopathy. Spine 26(17):1890–1894 (discussion 5)CrossRefPubMedGoogle Scholar
  20. 20.
    Kato S, Oshima Y, Oka H, Chikuda H, Takeshita Y, Miyoshi K et al (2015) Comparison of the Japanese Orthopaedic Association (JOA) score and modified JOA (mJOA) score for the assessment of cervical myelopathy: a multicenter observational study. PLoS ONE 10(4):e123022CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tetreault L, Kopjar B, Nouri A, Arnold P, Barbagallo G, Bartels R et al (2017) The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J 26(1):78–84CrossRefPubMedGoogle Scholar
  22. 22.
    Sumi M, Miyamoto H, Suzuki T, Kaneyama S, Kanatani T, Uno K (2012) Prospective cohort study of mild cervical spondylotic myelopathy without surgical treatment. J Neurosurg Spine 16(1):8–14CrossRefPubMedGoogle Scholar
  23. 23.
    Shimomura T, Sumi M, Nishida K, Maeno K, Tadokoro K, Miyamoto H et al (2007) Prognostic factors for deterioration of patients with cervical spondylotic myelopathy after nonsurgical treatment. Spine 32(22):2474–2479CrossRefPubMedGoogle Scholar
  24. 24.
    Rhee JM, Shamji MF, Erwin WM, Bransford RJ, Yoon ST, Smith JS et al (2013) Nonoperative management of cervical myelopathy: a systematic review. Spine 38(22 Suppl 1):S55–S67CrossRefPubMedGoogle Scholar
  25. 25.
    Fehlings MG, Wilson JR, Kopjar B, Yoon ST, Arnold PM, Massicotte EM et al (2013) Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am 95(18):1651–1658CrossRefPubMedGoogle Scholar
  26. 26.
    Fehlings MG, Ibrahim A, Tetreault L, Albanese V, Alvarado M, Arnold P et al (2015) A global perspective on the outcomes of surgical decompression in patients with cervical spondylotic myelopathy: results from the prospective multicenter AOSpine international study on 479 patients. Spine 40(17):1322–1328CrossRefPubMedGoogle Scholar
  27. 27.
    Matsunaga S, Komiya S, Toyama Y (2015) Risk factors for development of myelopathy in patients with cervical spondylotic cord compression. Eur Spine J 24(Suppl 2):142–149CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshimatsu H, Nagata K, Goto H, Sonoda K, Ando N, Imoto H et al (2001) Conservative treatment for cervical spondylotic myelopathy. prediction of treatment effects by multivariate analysis. Spine J 1(4):269–273CrossRefPubMedGoogle Scholar
  29. 29.
    Lo YL (2008) How has electrophysiology changed the management of cervical spondylotic myelopathy? Eur J Neurol 15(8):781–786CrossRefPubMedGoogle Scholar
  30. 30.
    Simo M, Szirmai I, Aranyi Z (2004) Superior sensitivity of motor over somatosensory evoked potentials in the diagnosis of cervical spondylotic myelopathy. Eur J Neurol 11(9):621–626CrossRefPubMedGoogle Scholar
  31. 31.
    Rao RD, Gourab K, David KS (2006) Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am 88(7):1619–1640CrossRefPubMedGoogle Scholar
  32. 32.
    Bucciero A, Vizioli L, Carangelo B, Tedeschi G (1993) MR signal enhancement in cervical spondylotic myelopathy. Correlation with surgical results in 35 cases. J Neurosurg Sci 37(4):217–222PubMedGoogle Scholar
  33. 33.
    Arnasson O, Carlsson CA, Pellettieri L (1987) Surgical and conservative treatment of cervical spondylotic radiculopathy and myelopathy. Acta Neurochir 84(1–2):48–53CrossRefPubMedGoogle Scholar
  34. 34.
    Gok B, Sciubba DM, McLoughlin GS, McGirt M, Ayhan S, Wolinsky JP et al (2008) Surgical treatment of cervical spondylotic myelopathy with anterior compression: a review of 67 cases. J Neurosurg Spine 9(2):152–157CrossRefPubMedGoogle Scholar
  35. 35.
    Guan L, Hai Y, Yang JC, Zhou LJ, Chen XL (2015) Anterior cervical discectomy and fusion may be more effective than anterior cervical corpectomy and fusion for the treatment of cervical spondylotic myelopathy. Bmc Musculoskelet Disord 16:29CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu L, Sun H, Li Z, Liu X, Xu G (2017) Anterior cervical discectomy and fusion versus posterior laminoplasty for multilevel cervical myelopathy: a meta-analysis. Int J Surg 48:247.  https://doi.org/10.1016/j.ijsu.2017.06.030 CrossRefPubMedGoogle Scholar
  37. 37.
    Wang T, Wang H, Liu S, An HD, Liu H, Ding WY (2016) Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion in multilevel cervical spondylotic myelopathy: a meta-analysis. Medicine (Baltimore) 95(49):e5437CrossRefGoogle Scholar
  38. 38.
    Liu FY, Yang SD, Huo LS, Wang T, Yang DL, Ding WY (2016) Laminoplasty versus laminectomy and fusion for multilevel cervical compressive myelopathy: a meta-analysis. Medicine (Baltimore) 95(23):e3588CrossRefGoogle Scholar
  39. 39.
    Kaptain GJ, Simmons NE, Replogle RE, Pobereskin L (2000) Incidence and outcome of kyphotic deformity following laminectomy for cervical spondylotic myelopathy. J Neurosurg 93(2 Suppl):199–204PubMedGoogle Scholar
  40. 40.
    Sodeyama T, Goto S, Mochizuki M, Takahashi J, Moriya H (1999) Effect of decompression enlargement laminoplasty for posterior shifting of the spinal cord. Spine 24(15):1527–1531 (discussion 31–2)CrossRefPubMedGoogle Scholar
  41. 41.
    Jarzem PF, Quance DR, Doyle DJ, Begin LR, Kostuik JP (1992) Spinal cord tissue pressure during spinal cord distraction in dogs. Spine 17(8 Suppl):S227–S234CrossRefPubMedGoogle Scholar
  42. 42.
    Shimizu K, Nakamura M, Nishikawa Y, Hijikata S, Chiba K, Toyama Y (2005) Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine 30(21):2388–2392CrossRefPubMedGoogle Scholar
  43. 43.
    Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM et al (2013) Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine 38(22 Suppl 1):S149–S160CrossRefPubMedGoogle Scholar
  44. 44.
    Kawakami M, Tamaki T, Iwasaki H, Yoshida M, Ando M, Yamada H (2000) A comparative study of surgical approaches for cervical compressive myelopathy. Clin Orthop Relat Res 381:129–136CrossRefGoogle Scholar
  45. 45.
    Yonenobu K, Fuji T, Ono K, Okada K, Yamamoto T, Harada N (1985) Choice of surgical treatment for multisegmental cervical spondylotic myelopathy. Spine 10(8):710–716CrossRefPubMedGoogle Scholar
  46. 46.
    Herkowitz HN, Kurz LT, Overholt DP (1990) Surgical management of cervical soft disc herniation. A comparison between the anterior and posterior approach. Spine 15(10):1026–1030CrossRefPubMedGoogle Scholar
  47. 47.
    Kadoya S, Nakamura T, Kwak R (1984) A microsurgical anterior osteophytectomy for cervical spondylotic myelopathy. Spine 9(5):437–441CrossRefPubMedGoogle Scholar
  48. 48.
    Sah S, Wang L, Dahal M, Acharya P, Dwivedi R (2012) Surgical management of cervical spondylotic myelopathy. J Nepal Med 52(188):172–177Google Scholar
  49. 49.
    Ratliff JK, Cooper PR (2003) Cervical laminoplasty: a critical review. J Neurosurg 98(3 Suppl):230–238PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Zentrum für Wirbelsäulenchirurgie, Klinik für Orthopädie, Unfallchirurgie und ParaplegiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.WirbelsäulenzentrumSt. Josefs-HospitalWiesbadenDeutschland

Personalised recommendations