Oberflächenmodifikationen von Implantaten. Teil 2

Klinische Anwendung
CME

Zusammenfassung

Sowohl die chemische Komposition eines Werkstoffes als auch dessen Oberflächenstruktur und -topografie beeinflussen ganz wesentlich die Wirkungen von Implantaten im Körper. In der Orthopädie und Unfallchirurgie leisten sie hierdurch einen wichtigen Beitrag zur Lösung der aktuellen und zukünftigen Herausforderungen. Besonders hoch sind die Anforderungen für Implantate mit dauerhafter Anwendung am Knochen. Diese sind neben der Materialalterung durch oxidative Prozesse zusätzlich zyklischen Belastungen und damit einem biomechanischen Verschleiß ausgesetzt. Gegenwärtig werden insbesondere Strategien verfolgt, das Risiko implantatassoziierter immunogener Unverträglichkeiten zu minimieren sowie die Inzidenz periprothetischer Infekte weiter zu senken. Der vorliegende Beitrag gibt einen Überblick über die hierzu eingesetzten Oberflächenmodifikationen und deren Wirkprinzipien. Darüber hinaus werden aktuelle Entwicklungsstrategien für die gezielte klinische Anwendung von Implantatoberflächen skizziert.

Schlüsselwörter

Biokompatibilität Osteointegration Oberflächenstruktur Werkstoff Materialalterung 

Surface modifications of implants. Part 2

Clinical application

Abstract

The chemical composition, surface structure and topography of a biomaterial have an essential influence on the effects of an implant in the human body. In orthopedic and trauma surgery they make a relevant contribution to solve the current and future challenges. Particularly high are the requirements of permanent implants in bone. Besides material aging due to oxidation, implants are subjected to cyclic loading that leads to relevant biomechanical wear and abrasion. To date significant efforts have been made to minimize adverse implant-associated immunoreactions as well as the risk of periprosthetic infections. This review gives an overview of surface modifications of implants designed for clinical application and their effects in vivo. Beside material-specific and biological principles, different surface modifications for distinct clinical applications are presented. Furthermore, current developmental strategies for the targeted clinical application of implant surfaces are outlined.

Keywords

Biocompatibility Osteointegration Surface structure Material Material aging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Jäger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Jäger M (2018) Oberflächenmodifikationen von Implantaten. Teil 1 Werkstofftechnische und biologische Grundlagen. Orthopäde 47:347–366.  https://doi.org/10.1007/s00132-018-3548-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Roland L, Backhaus S, Grau M et al (2016) Evaluation of functionalized porous titanium implants for enhancing angiogenesis in vitro. Materials (Basel) 9(4):304.  https://doi.org/10.3390/ma9040304 CrossRefGoogle Scholar
  3. 3.
    Burkhardt MA, Gerber I, Moshfegh C et al (2017) Clot-entrapped blood cells in synergy with human mesenchymal stem cells create a pro-angiogenic healing response. Biomater Sci 5:2009–2023CrossRefPubMedGoogle Scholar
  4. 4.
    De Queiroz Fernandes J, De Lima VN, Bonardi JP et al (2018) Bone regeneration with recombinant human bone morphogenetic protein 2: a systematic review. J Maxillofac Oral Surg 17:13–18CrossRefPubMedGoogle Scholar
  5. 5.
    Misch CM (2017) Bone augmentation using allogeneic bone blocks with recombinant bone morphogenetic protein-2. Implant Dent 26:826–831CrossRefPubMedGoogle Scholar
  6. 6.
    Parker RM, Malham GM (2017) Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J 26:754–763CrossRefPubMedGoogle Scholar
  7. 7.
    Passias PG, Soroceanu A, Yang S et al (2016) Predictors of revision surgical procedure excluding wound complications in adult spinal deformity and impact on patient-reported outcomes and satisfaction: a two-year follow-up. J Bone Joint Surg Am 98:536–543CrossRefPubMedGoogle Scholar
  8. 8.
    Gallo J, Slouf M, Goodman SB (2010) The relationship of polyethylene wear to particle size, distribution, and number: a possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res Part B Appl Biomater 94:171–177PubMedGoogle Scholar
  9. 9.
    Macquarrie RA, Fang Chen Y, Coles C et al (2004) Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J Biomed Mater Res B Appl Biomater 69:104–112CrossRefPubMedGoogle Scholar
  10. 10.
    Wang ML, Sharkey PF, Tuan RS (2004) Particle bioreactivity and wear-mediated osteolysis. J Arthroplasty 19:1028–1038CrossRefPubMedGoogle Scholar
  11. 11.
    Wroblewski BM (1994) Osteolysis due to particle wear debris following total hip arthroplasty: the role of high-density polyethylene. Instr Course Lect 43:289–294PubMedGoogle Scholar
  12. 12.
    Grammatopoulos G, Munemoto M, Pollalis A et al (2017) Correlation of serum metal ion levels with pathological changes of ARMD in failed metal-on-metal-hip-resurfacing arthroplasties. Arch Orthop Trauma Surg 137:1129–1137CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hallab NJ, Jacobs JJ (2017) Chemokines associated with pathologic responses to orthopedic implant debris. Front Endocrinol (Lausanne) 8:5Google Scholar
  14. 14.
    Landgraeber S, Jager M, Jacobs JJ et al (2014) The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators Inflamm 2014:185150CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Samelko L, Landgraeber S, Mcallister K et al (2017) TLR4 (not TLR2) dominate cognate TLR activity associated with CoCrMo implant particles. J Orthop Res 35:1007–1017CrossRefPubMedGoogle Scholar
  16. 16.
    Wisbey A, Gregson PJ, Tuke M (1987) Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials 8:477–480CrossRefPubMedGoogle Scholar
  17. 17.
    Jäger M, Jennissen HP, Dittrich F et al (2017) Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials (Basel) 10(11):1302.  https://doi.org/10.3390/ma10111302 CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Busscher HJ, Van Der MHC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8:e1002440CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sjollema J, Keul H, Van Der MH et al (2017) A trifunctional, modular biomaterial coating: nonadhesive to bacteria, chlorhexidine-releasing and tissue-integrating. Macromol Biosci.  https://doi.org/10.1002/mabi.201600336 PubMedGoogle Scholar
  20. 20.
    Van De Lagemaat M, Grotenhuis A, Van De Belt-Gritter B et al (2017) Comparison of methods to evaluate bacterial contact-killing materials. Acta Biomater 59:139–147CrossRefPubMedGoogle Scholar
  21. 21.
    Alexander JW (2009) History of the medical use of silver. Surg Infect 10:289–292CrossRefGoogle Scholar
  22. 22.
    Devlin-Mullin A, Todd NM, Golrokhi Z et al (2017) Atomic layer deposition of a silver nanolayer on advanced titanium orthopedic implants inhibits bacterial colonization and supports vascularized de novo bone ingrowth. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201700033 PubMedGoogle Scholar
  23. 23.
    Kakinuma H, Ishii K, Ishihama H et al (2015) Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties. J Biomed Mater Res A 103:57–64CrossRefPubMedGoogle Scholar
  24. 24.
    Brennan SA, Ni Fhoghlu C, Devitt BM et al (2015) Silver nanoparticles and their orthopaedic applications. Bone Joint J 97-B:582–589CrossRefPubMedGoogle Scholar
  25. 25.
    Pfeufer NY, Hofmann-Peiker K, Muhle M et al (2011) Bioactive coating of titanium surfaces with recombinant human beta-defensin-2 (rHubetaD2) may prevent bacterial colonization in orthopaedic surgery. J Bone Joint Surg Am 93:840–846CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou L, Lin Z, Ding J et al (2017) Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization. Colloids Surf B Biointerfaces 160:581–588CrossRefPubMedGoogle Scholar
  27. 27.
    Geng H, Yuan Y, Adayi A et al (2018) Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants. Mater Sci Eng C Mater Biol Appl 82:141–154CrossRefPubMedGoogle Scholar
  28. 28.
    Mandell JB, Deslouches B, Montelaro RC et al (2017) Elimination of antibiotic resistant surgical implant biofilms using an engineered cationic amphipathic peptide WLBU2. Sci Rep 7:18098CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kozlovsky A, Artzi Z, Moses O et al (2006) Interaction of chlorhexidine with smooth and rough types of titanium surfaces. J Periodontol 77:1194–1200CrossRefPubMedGoogle Scholar
  30. 30.
    Metsemakers WJ, Reul M, Nijs S (2015) The use of gentamicin-coated nails in complex open tibia fracture and revision cases: a retrospective analysis of a single centre case series and review of the literature. Injury 46:2433–2437CrossRefPubMedGoogle Scholar
  31. 31.
    Romano CL, Scarponi S, Gallazzi E et al (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum EssenUniversität Duisburg-EssenEssenDeutschland

Personalised recommendations