Advertisement

Der Orthopäde

, Volume 47, Issue 4, pp 310–319 | Cite as

Pseudarthrose und Konstruktversagen nach lumbaler Pedikelsubtraktionsosteotomie

Einflüsse von Biomechanik, Operationstechnik, Biologie und Vermeidungsstrategien
  • C. Birkenmaier
Leitthema

Zusammenfassung

Multiple Faktoren können die Ausbildung einer Pseudarthrose und ein Konstruktversagen nach lumbaler Pedikelsubtraktionsosteotomie (PSO) begünstigen und in den meisten Fällen sind mehrere Faktoren gemeinsam ausschlaggebend. Diese Arbeit versucht, die chirurgischen, biomechanischen und biologischen Aspekte zu erklären, die verstanden werden sollten, um das Risiko für Pseudarthrosen und Konstruktversagen zu minimieren. Es werden technische Varianten der PSO und chirurgisch-technische Aspekte dargestellt sowie die Wahl von Metalllegierungen und Multistabkonstrukte erklärt. Biologische Gründe für eine Pseudarthrose und Vermeidungsstrategien werden ebenso diskutiert wie der mögliche Einfluss von Low-grade-Infekten auf die Pseudarthroseentstehung. Zudem wird auf indikatorische Aspekte eingegangen und auf die mögliche Alternative, Lordosen über multiple ALIF zu rekonstruieren, um so unter Umständen eine PSO zu vermeiden.

Schlüsselwörter

Postoperative Komplikationen Stabbruch Sagittale Balance PMMA-Diskoplastie Propionibacterium acnes 

Abkürzungen

ALIF

„Anterior lumbar interbody fusion“

ASD

Adulte spinale Deformitäten

CAM

Mitte der Verbindungslinie zwischen den Meati acustici

CoCr

„Cobalt chrome“

CPTi

„Commercially pure titanium“

LWS

Lendenwirbelsäule

oPLIF

„Open posterior lumbar intervertebral fusion“

PI

„Pelvic incidence“

PLIF

„Posterior lumbar intervertebral fusion“

PMMA

Polymethylmethacrylat

PSO

Pedikelsubtraktionsosteotomie

rhBMP

Rekombinantes menschliches Knochenmorphogeneseprotein

SS

„Stainless steel“

SVA

Sagittale vertikale Achse

TiAlV

Titanium-alumin(i)um-vanadium

TLIF

„Transforaminal lumbar interbody fusion“

XLIF

„Extreme lateral interbody fusion“

Z. n.

Zustand nach

Pseudarthrosis and construct failure after lumbar pedicle subtraction osteotomy

Influence of biomechanics, surgical technique, biology and avoidance strategies

Abstract

There are numerous factors that can lead to construct failure and pseudarthrosis after corrective pedicle subtraction osteotomy (PSO) in the lumbar spine. Frequently, several factors are of relevance in these problematic cases. This article attempts to explain the surgical, biomechanical and biological aspects that should be understood in order to minimize the risk of pseudarthrosis and construct failure. It addresses technical varieties of the PSO procedure as well as the surgical technique, the choice of rod material and the design of multirod constructs. Biological reasons for pseudarthrosis and preventive strategies are discussed, as well as the possible contribution of low-grade infections to pseudarthrosis. The option of substituting a multilevel ALIF procedure for a PSO is another topic, as is the question of surgical indication and strategy.

Keywords

Postoperative complications Rod fracture Sagittal balance PMMA discoplasty Propionibacterium acnes 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Birkenmaier gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ames CP, Barry JJ, Keshavarzi S, Dede O, Weber MH, Deviren V (2013) Perioperative Outcomes and Complications of Pedicle Subtraction Osteotomy in Cases With Single Versus Two Attending Surgeons. Spine Deform 1:51–58.  https://doi.org/10.1016/j.jspd.2012.10.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Hyun SJ, Rhim SC (2010) Clinical outcomes and complications after pedicle subtraction osteotomy for fixed sagittal imbalance patients : a long-term follow-up data. J Korean Neurosurg Soc 47:95–101.  https://doi.org/10.3340/jkns.2010.47.2.95 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Auerbach JD, Lenke LG, Bridwell KH, Sehn JK, Milby AH, Bumpass D, Crawford CH 3rd, O’Shaughnessy BA, Buchowski JM, Chang MS, Zebala LP, Sides BA (2012) Major complications and comparison between 3‑column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976) 37, S 1198–1210  https://doi.org/10.1097/BRS.0b013e31824fffde Google Scholar
  4. 4.
    Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KM, Keshavarzi S, Li CM, Deviren V, Schwab FJ, Lafage V, Bess S (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71:862–867.  https://doi.org/10.1227/NEU.0b013e3182672aab CrossRefPubMedGoogle Scholar
  5. 5.
    Gangnet N, Pomero V, Dumas R, Skalli W, Vital JM (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surgical and radiologic anatomy. SRA 25:424–433.  https://doi.org/10.1007/s00276-003-0154-6 PubMedGoogle Scholar
  6. 6.
    Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Watanabe K (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J 25:3675–3686.  https://doi.org/10.1007/s00586-016-4702-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Steffen JS, Obeid I, Aurouer N, Hauger O, Vital JM, Dubousset J, Skalli W (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767.  https://doi.org/10.1007/s00586-009-1249-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Barton C, Noshchenko A, Patel V, Cain C, Kleck C, Burger E (2015) Risk factors for rod fracture after posterior correction of adult spinal deformity with osteotomy: a retrospective case-series. Scoliosis 10:30.  https://doi.org/10.1186/s13013-015-0056-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim YJ, Bridwell KH, Lenke LG, Cheh G, Baldus C (2007) Results of lumbar pedicle subtraction osteotomies for fixed sagittal imbalance: a minimum 5‑year follow-up study. Spine (Phila Pa 1976) 32:2189–2197.  https://doi.org/10.1097/BRS.0b013e31814b8371. 00007632-200709150-00008 [pii]CrossRefPubMedGoogle Scholar
  10. 10.
    Dickson DD, Lenke LG, Bridwell KH, Koester LA (2014) Risk factors for and assessment of symptomatic pseudarthrosis after lumbar pedicle subtraction osteotomy in adult spinal deformity. Spine (Phila Pa 1976) 39, S 1190–1195  https://doi.org/10.1097/BRS.0000000000000380 Google Scholar
  11. 11.
    Luca A, Lovi A, Galbusera F, Brayda-Bruno M (2014) Revision surgery after PSO failure with rod breakage: a comparison of different techniques. Eur Spine J 23 Suppl 6:610–615.  https://doi.org/10.1007/s00586-014-3555-9 Google Scholar
  12. 12.
    Dorward IG, Lenke LG, Bridwell KH, O’Leary PT, Stoker GE, Pahys JM, Kang MM, Sides BA, Koester LA (2013) Transforaminal versus anterior lumbar interbody fusion in long deformity constructs: a matched cohort analysis. Spine (Phila Pa 1976) 38:E755–762.  https://doi.org/10.1097/BRS.0b013e31828d6ca3 Google Scholar
  13. 13.
    Chang KW, Cheng CW, Chen HC, Chang KI, Chen TC (2008) Closing-opening wedge osteotomy for the treatment of sagittal imbalance. Spine (Phila Pa 1976) 33:1470–1477. doi:  https://doi.org/10.1097/BRS.0b013e3181753bcd. 00007632-200806010-00013 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Varga PP, Jakab G, Bors IB, Lazary A, Szoverfi Z (2015) Experiences with PMMA cement as a stand-alone intervertebral spacer. Percutaneous cement discoplasty in the case of vacuum phenomenon within lumbar intervertebral discs. Orthopäde 44:124–131.  https://doi.org/10.1007/s00132-015-3092-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Leveque JC, Yanamadala V, Buchlak QD, Sethi RK (2017) Correction of severe spinopelvic mismatch: decreased blood loss with lateral hyperlordotic interbody grafts as compared with pedicle subtraction osteotomy. Neurosurg Focus 43:E15.  https://doi.org/10.3171/2017.5.focus17195 CrossRefPubMedGoogle Scholar
  16. 16.
    Strom RG, Bae J, Mizutani J, Valone F 3rd, Ames CP, Deviren V (2016) Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J Neurosurg Spine 25:697–705.  https://doi.org/10.3171/2016.4.spine16157 CrossRefPubMedGoogle Scholar
  17. 17.
    Mundis GM Jr., Turner JD, Kabirian N, Pawelek J, Eastlack RK, Uribe J, Klineberg E, Bess S, Ames C, Deviren V, Nguyen S, Lafage V, Akbarnia BA (2017) Anterior Column Realignment has Similar Results to Pedicle Subtraction Osteotomy in Treating Adults with Sagittal Plane Deformity. World neurosurgery  https://doi.org/10.1016/j.wneu.2017.05.122 Google Scholar
  18. 18.
    Thomasen E (1985) Vertebral osteotomy for correction of kyphosis in ankylosing spondylitis. Clin Orthop Relat Res 194:142–152Google Scholar
  19. 19.
    Reyle G, Lorbach O, Diffo Kaze A, Hoffmann A, Pape D (2017) Prevention of lateral cortex fractures in open wedge high tibial osteotomies : The anteroposterior drill hole approach. Orthopäde 46:610–616.  https://doi.org/10.1007/s00132-017-3418-2 CrossRefPubMedGoogle Scholar
  20. 20.
    Charosky S, Moreno P, Maxy P (2014) Instability and instrumentation failures after a PSO: a finite element analysis. Eur Spine J 23:2340–2349.  https://doi.org/10.1007/s00586-014-3295-x CrossRefPubMedGoogle Scholar
  21. 21.
    Luca A, Ottardi C, Lovi A, Brayda-Bruno M, Villa T, Galbusera F (2017) Anterior support reduces the stresses on the posterior instrumentation after pedicle subtraction osteotomy: a finite-element study. Eur Spine J.  https://doi.org/10.1007/s00586-017-5084-9 Google Scholar
  22. 22.
    Boachie-Adjei O (2006) Role and technique of eggshell osteotomies and vertebral column resections in the treatment of fixed sagittal imbalance. Instr Course Lect 55:583–589PubMedGoogle Scholar
  23. 23.
    Enercan M, Ozturk C, Kahraman S, Sarier M, Hamzaoglu A, Alanay A (2013) Osteotomies/spinal column resections in adult deformity. Eur Spine J 22 Suppl 2:S254–264.  https://doi.org/10.1007/s00586-012-2313-0 Google Scholar
  24. 24.
    Schwab F, Blondel B, Chay E, Demakakos J, Lenke L, Tropiano P, Ames C, Smith JS, Shaffrey CI, Glassman S, Farcy JP, Lafage V (2014) The comprehensive anatomical spinal osteotomy classification. Neurosurgery 74:112–120CrossRefPubMedGoogle Scholar
  25. 25.
    Berjano P, Pejrona M, Damilano M, Cecchinato R, Aguirre MF, Lamartina C (2015) Corner osteotomy: a modified pedicle subtraction osteotomy for increased sagittal correction in the lumbar spine. Eur Spine J 24 Suppl 1:58–65.  https://doi.org/10.1007/s00586-014-3618-y
  26. 26.
    Tang JA, Leasure JM, Smith JS, Buckley JM, Kondrashov D, Ames CP (2013) Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study. Neurosurgery 72:276–282CrossRefPubMedGoogle Scholar
  27. 27.
    Nguyen TQ, Buckley JM, Ames C, Deviren V (2011) The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng H 225:194–198CrossRefPubMedGoogle Scholar
  28. 28.
    Luca A, Ottardi C, Sasso M, Prosdocimo L, La Barbera L, Brayda-Bruno M, Galbusera F, Villa T (2017) Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. Eur Spine J 26:764–770.  https://doi.org/10.1007/s00586-016-4859-8 CrossRefPubMedGoogle Scholar
  29. 29.
    Jager ZS, Inceoglu S, Palmer D, Akpolat YT, Cheng WK (2016) Preventing Instrumentation Failure in Three-Column Spinal Osteotomy: Biomechanical Analysis of Rod Configuration. Spine Deform 4:3–9.  https://doi.org/10.1016/j.jspd.2015.06.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Hyun SJ, Lenke LG, Kim YC, Koester LA, Blanke KM (2014) Comparison of standard 2‑rod constructs to multiple-rod constructs for fixation across 3‑column spinal osteotomies. Spine (Phila Pa 1976) 39, S 1899–1904  https://doi.org/10.1097/brs.0000000000000556 Google Scholar
  31. 31.
    Kavadi N, Tallarico RA, Lavelle WF (2017) Analysis of instrumentation failures after three column osteotomies of the spine. Scoliosis Spinal Disord 12:19.  https://doi.org/10.1186/s13013-017-0127-x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T, Shibata Y, Ojima T, Yamagata Z, Matsuyama Y, Haro H (2017) Role of Weekly Teriparatide Administration in Osseous Union Enhancement within Six Months After Posterior or Transforaminal Lumbar Interbody Fusion for Osteoporosis-Associated Lumbar Degenerative Disorders: A Multicenter, Prospective Randomized Study. J Bone Joint Surg Am 99:365–372.  https://doi.org/10.2106/JBJS.16.00230 CrossRefPubMedGoogle Scholar
  33. 33.
    Sugiura T, Kashii M, Matsuo Y, Morimoto T, Honda H, Kaito T, Iwasaki M, Yoshikawa H (2015) Intermittent administration of teriparatide enhances graft bone healing and accelerates spinal fusion in rats with glucocorticoid-induced osteoporosis. Spine J 15:298–306.  https://doi.org/10.1016/j.spinee.2014.08.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Ozawa T, Takahashi K, Toyone T (2012) Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976) 37:E1464–1468.  https://doi.org/10.1097/BRS.0b013e31826ca2a8 Google Scholar
  35. 35.
    Inoue G, Ueno M, Nakazawa T, Imura T, Saito W, Uchida K, Ohtori S, Toyone T, Takahira N, Takaso M (2014) Teriparatide increases the insertional torque of pedicle screws during fusion surgery in patients with postmenopausal osteoporosis. J Neurosurg Spine 21:425–431.  https://doi.org/10.3171/2014.5.spine13656 CrossRefPubMedGoogle Scholar
  36. 36.
    Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Toyone T, Takahashi K (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976) 38:E487–492.  https://doi.org/10.1097/BRS.0b013e31828826dd Google Scholar
  37. 37.
    Cho PG, Ji GY, Shin DA, Ha Y, Yoon DH, Kim KN (2015) An effect comparison of teriparatide and bisphosphonate on posterior lumbar interbody fusion in patients with osteoporosis: a prospective cohort study and preliminary data. Eur Spine J.  https://doi.org/10.1007/s00586-015-4342-y Google Scholar
  38. 38.
    Vavken J, Mameghani A, Vavken P, Schaeren S (2016) Complications and cancer rates in spine fusion with recombinant human bone morphogenetic protein-2 (rhBMP-2). Eur Spine J 25:3979–3989.  https://doi.org/10.1007/s00586-015-3870-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Bannwarth M, Kleiber JC, Marlier B, Eap C, Duntze J, Litre CF (2016) Ectopic bone formation with joint impingement after posterior lumbar fusion with rhBMP-2. Orthopaedics & traumatology, surgery & research. OTSR 102:255–256.  https://doi.org/10.1016/j.otsr.2015.11.013 PubMedGoogle Scholar
  40. 40.
    Aichmair A, Girardi FP, Hughes AP, Sama AA, Lebl DR, Cammisa FP (2013) Symptomatic heterotopic bone formation after rhBMP-2 utilization in lateral lumbar interbody fusion. Spine J 13:1411–1412.  https://doi.org/10.1016/j.spinee.2013.07.473 CrossRefPubMedGoogle Scholar
  41. 41.
    Lehman RA Jr., Kang DG (2012) Symptomatic ectopic intracanal ossification after transforaminal lumbar interbody fusion with rhBMP-2. Spine J 12:530–531.  https://doi.org/10.1016/j.spinee.2012.05.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Glassman SD, Howard J, Dimar J, Sweet A, Wilson G, Carreon L (2011) Complications with recombinant human bone morphogenic protein-2 in posterolateral spine fusion: a consecutive series of 1037 cases. Spine (Phila Pa 1976) 36:1849–1854.  https://doi.org/10.1097/BRS.0b013e3181d133d0 Google Scholar
  43. 43.
    Newman JH, Mitchell RG (1975) Diphtheroid infection of the cervical spine. Acta Orthop Scand 46:67–70CrossRefPubMedGoogle Scholar
  44. 44.
    Richards BS (1995) Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg Am 77:524–529CrossRefPubMedGoogle Scholar
  45. 45.
    Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TS (2001) Association between sciatica and Propionibacterium acnes. Lancet 357:2024–2025.  https://doi.org/10.1016/S0140-6736(00)05109-6 CrossRefPubMedGoogle Scholar
  46. 46.
    Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707.  https://doi.org/10.1007/s00586-013-2675-y CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Norgaard HS, Vernallis A, Busch F, Manniche C, Elliott T (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696.  https://doi.org/10.1007/s00586-013-2674-z CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Birkenmaier C (2013) Should We Start Treating Chronic Low Back Pain with Antibiotics Rather than with Pain Medications? Korean J Pain 26:327–335.  https://doi.org/10.3344/kjp.2013.26.4.327 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Capoor MN, Ruzicka F, Schmitz JE, James GA, Machackova T, Jancalek R, Smrcka M, Lipina R, Ahmed FS, Alamin TF, Anand N, Baird JC, Bhatia N, Demir-Deviren S, Eastlack RK, Fisher S, Garfin SR, Gogia JS, Gokaslan ZL, Kuo CC, Lee YP, Mavrommatis K, Michu E, Noskova H, Raz A, Sana J, Shamie AN, Stewart PS, Stonemetz JL, Wang JC, Witham TF, Coscia MF, Birkenmaier C, Fischetti VA, Slaby O (2017) Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS ONE 12:e174518.  https://doi.org/10.1371/journal.pone.0174518 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Capoor MN, Ruzicka F, Machackova T, Jancalek R, Smrcka M, Schmitz JE, Hermanova M, Sana J, Michu E, Baird JC, Ahmed FS, Maca K, Lipina R, Alamin TF, Coscia MF, Stonemetz JL, Witham T, Ehrlich GD, Gokaslan ZL, Mavrommatis K, Birkenmaier C, Fischetti VA, Slaby O (2016) Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study. PLoS ONE 11:e161676.  https://doi.org/10.1371/journal.pone.0161676 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shifflett GD, Bjerke-Kroll BT, Nwachukwu BU, Kueper J, Burket J, Sama AA, Girardi FP, Cammisa FP, Hughes AP (2016) Microbiologic profile of infections in presumed aseptic revision spine surgery. Eur Spine J 25:3902–3907.  https://doi.org/10.1007/s00586-016-4539-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Orthopädie, Physikalische Medizin und RehabilitationKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations