Intrauterine Prägung – Konzept und Bedeutung der Plazenta

Intrauterine programming—the role and importance of the placenta

Zusammenfassung

Fetale Prägung beschreibt den Zusammenhang zwischen dem Einfluss exogener und endogener Faktoren in sensiblen Phasen der Fetalentwicklung und dem Zellwachstum und der Organentwicklung, letztendlich mit dem Resultat einer anhaltenden postnatalen Veränderung in Organ- und Gewebsfunktionen. Hierbei kann eine Fehlanpassung mit dem Auftreten von Erkrankungen im gesamten späteren Leben assoziiert sein. Suboptimale intrauterine Bedingungen, wie etwa maternale Fehlernährung, Hypoxie, psychischer Stress oder aber die GC(Glukokortikoid)-Exposition, können die fetale Entwicklung nachhaltig beeinflussen und sind häufig mit einer Verringerung des Geburtsgewichts assoziiert. Das mögliche Spektrum der Spätfolgen ist hierbei weit gefächert. Die antenatale Behandlung mit GC scheint mit einer geschlechtsspezifischen fetalen Wachstumsrestriktion sowie strukturellen und funktionellen Veränderungen in der Plazenta assoziiert zu sein, die potenziell die Gesundheit im späteren Leben beeinflussen können. Während bei den weiblichen Feten eine eher kontinuierliche Sensibilität gegenüber GC zu bestehen scheint, möglicherweise im Sinne einer präferentiellen Überlebensstrategie zur Sicherung der Reproduktionsfähigkeit mit Spezieserhalt, scheint bei männlichen Feten nach GC-Exposition die Plazenta zumindest temporär eine Resistenz gegenüber GC zu entwickeln. Die geschlechtsspezifische Sensibilität gegenüber GC wird vermutlich durch ein unterschiedliches GR(GC-Rezeptoren)-Verteilungsmuster, Expression und/oder Interaktion verursacht und durch die Behandlung mit GC beeinflusst. Ein verbessertes Verständnis für die plazentavermittelten Signalwege, die zur fetalen Programmierung beitragen, wird von entscheidender Bedeutung bei den Bemühungen sein, interventionelle Strategien für Risikogruppen zu entwickeln.

Abstract

Fetal programming describes the relationship between the influence of exogenous and endogenous factors in sensitive phases of fetal development and cell growth and organ development, ultimately resulting in a persistent postnatal change in organ and tissue function. Errors in this process can be associated with the appearance of diseases in later life. Suboptimal intrauterine conditions such as maternal malnutrition, hypoxia, psychological stress, or glucocorticoid (GC) exposure during pregnancy can have lasting effects on fetal development and are often associated with a reduction in birth weight. The possible spectrum of late effects is wide ranging. Antenatal GC treatment appears to be associated with gender-specific fetal growth restriction as well as structural and functional changes in the placenta that can potentially affect health later in life. While female fetuses seem to have a rather continuous sensitivity to GC, possibly in the sense of a preferential survival strategy to ensure reproductive ability with preservation of species, in male fetuses, the placenta seems to develop, at least temporarily, a resistance to GC after GC exposure. The gender-specific sensitivity to GC is probably caused by a different GR (glucocorticoid receptors) distribution pattern, expression, and/or interaction and influenced by treatment with GC. An improved understanding of the placenta-mediated signaling pathways that contribute to fetal programming will be critical in efforts to develop interventional strategies for high-risk groups.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Alfaidy N, Gupta S, Demarco C et al (2002) Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J Clin Endocrinol Metab 87:4797–4805

    CAS  PubMed  Google Scholar 

  2. 2.

    Anonymous March of Dimes, PMNCH, Save the Children, WHO (2012) Born too soon: the global action report on Preterm birth. Anonymous March of Dimes, PMNCH, Save the Children, WHO, Geneva

    Google Scholar 

  3. 3.

    Barker DJ (2002) Fetal programming of coronary heart disease. Trends Endocrinol Metab 13:364–368

    CAS  PubMed  Google Scholar 

  4. 4.

    Barker DJ, Bull AR, Osmond C et al (1990) Fetal and placental size and risk of hypertension in adult life. BMJ 301:259–262

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Barker DJ, Winter PD, Osmond C et al (1995) Weight gain in infancy and cancer of the ovary. Lancet 345:1087–1088

    CAS  PubMed  Google Scholar 

  6. 6.

    Barker DJ, Thornburg KL, Osmond C et al (2010) The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol 54:525–530

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Barker DJP, Eriksson JG, Kajantie E et al (2011) The maternal and placental origins of chronic disease. In: Burton PJ, Barker DJP, Moffett A, Thornburg K (Hrsg) The placenta and human developmental programming. Camebridge University Press, Camebridge, S 5–13

    Google Scholar 

  8. 8.

    Belkacemi L, Nelson DM, Desai M et al (2010) Maternal undernutrition influences placental-fetal development. Biol Reprod 83:325–331

    CAS  PubMed  Google Scholar 

  9. 9.

    Benediktsson R, Lindsay RS, Noble J et al (1993) Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341:339–341

    CAS  PubMed  Google Scholar 

  10. 10.

    Bergman K, Sarkar P, Glover V et al (2010) Maternal prenatal cortisol and infant cognitive development: moderation by infant-mother attachment. Biol Psychiatry 67:1026–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bolten MI, Wurmser H, Buske-Kirschbaum A et al (2011) Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health 14:33–41

    PubMed  Google Scholar 

  12. 12.

    Braun T, Challis JR, Newnham JP et al (2013) Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev 34:885–916

    CAS  PubMed  Google Scholar 

  13. 13.

    Braun T, Husar A, Challis JR et al (2013) Growth restricting effects of a single course of antenatal betamethasone treatment and the role of human placental lactogen. Placenta 34:407–415

    CAS  PubMed  Google Scholar 

  14. 14.

    Braun T, Sloboda DM, Tutschek B et al (2015) Fetal and neonatal outcome after different doses of betamethasone administration in preterm. In. Int J Gynaecol Obstet 130:64. https://doi.org/10.1016/j.ijgo.2015.01.013

    Article  PubMed  Google Scholar 

  15. 15.

    Challis JR, Matthews SG, Gibb W et al (2000) Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 21:514–550

    CAS  PubMed  Google Scholar 

  16. 16.

    Challis JRG (2004) Preterm birth, fetal glucocorticoids, and the developmental programming of health and disease (DOhaD). The 28th Sarrazin Lecture Canadian Physiology Society, Annual Meeting Silver Star Retreat, Vernon B.C, 31.01.

    Google Scholar 

  17. 17.

    Coan PM, Burton GJ, Ferguson-Smith AC (2005) Imprinted genes in the placenta—a review. Placenta 26(Suppl A):S10–S20

    PubMed  Google Scholar 

  18. 18.

    Committee on Obstetric Practice (2008) ACOG committee opinion no. 402: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol 111:805–807

    Google Scholar 

  19. 19.

    Crudo A, Petropoulos S, Moisiadis VG et al (2012) Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153:3269–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dave-Sharma S, Wilson RC, Harbison MD et al (1998) Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 83:2244–2254

    CAS  PubMed  Google Scholar 

  21. 21.

    Davis EP, Townsend EL, Gunnar MR et al (2006) Antenatal betamethasone treatment has a persisting influence on infant HPA axis regulation. J Perinatol 26:147–153

    CAS  PubMed  Google Scholar 

  22. 22.

    Edwards CR, Benediktsson R, Lindsay RS et al (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341:355–357

    CAS  PubMed  Google Scholar 

  23. 23.

    Eriksson J, Forsen T, Tuomilehto J et al (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794

    CAS  PubMed  Google Scholar 

  24. 24.

    Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Exp Physiol 94:607–625

    CAS  PubMed  Google Scholar 

  26. 26.

    Fowden AL, Li J, Forhead AJ (1998) Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc 57:113–122

    CAS  PubMed  Google Scholar 

  27. 27.

    Fowden AL, Ward JW, Wooding FP et al (2006) Programming placental nutrient transport capacity. J Physiol 572:5–15

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fowden AL, Forhead AJ, Coan PM et al (2008) The placenta and intrauterine programming. J Neuroendocrinol 20:439–450

    CAS  PubMed  Google Scholar 

  29. 29.

    French NP, Hagan R, Evans SF et al (1999) Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol 180:114–121

    CAS  PubMed  Google Scholar 

  30. 30.

    French NP, Hagan R, Evans SF et al (2004) Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol 190:588–595

    CAS  PubMed  Google Scholar 

  31. 31.

    Gabory A, Ferry L, Fajardy I et al (2012) Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. Plos One 7:e47986

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gluckman PD, Hanson M (2006) The conceptual basis for the developmental origins of health and disease. In: Gluckman PD, Hanson MA (Hrsg) Developmental origins of health and disease. University Press, Cambridge, S 33–50

    Google Scholar 

  33. 33.

    Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305:1733–1736

    CAS  PubMed  Google Scholar 

  34. 34.

    Godfrey KM (2002) The role of the placenta in fetal programming—a review. Placenta 23(Suppl A):S20–27

    PubMed  Google Scholar 

  35. 35.

    Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    CAS  PubMed  Google Scholar 

  36. 36.

    Hankinson SE, Willett WC, Michaud DS et al (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91:629–634

    CAS  PubMed  Google Scholar 

  37. 37.

    Hennessy DP, Coghlan JP, Hardy KJ et al (1982) The origin of cortisol in the blood of fetal sheep. J Endocrinol 95:71–79

    CAS  PubMed  Google Scholar 

  38. 38.

    Herzog CE, Andrassy RJ, Eftekhari F (2000) Childhood cancers: hepatoblastoma. Oncologist 5:445–453

    CAS  PubMed  Google Scholar 

  39. 39.

    Horsthemke B (2006) Epimutations in human disease. Curr Top Microbiol Immunol 310:45–59

    CAS  PubMed  Google Scholar 

  40. 40.

    Huh SY, Andrew R, Rich-Edwards JW et al (2008) Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med 6:25

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Imperatore A, Florio P, Torres PB et al (2006) Urocortin 2 and urocortin 3 are expressed by the human placenta, deciduas, and fetal membranes. Am J Obstet Gynecol 195:288–295

    CAS  PubMed  Google Scholar 

  42. 42.

    Khulan B, Drake AJ (2012) Glucocorticoids as mediators of developmental programming effects. Best Pract Res Clin Endocrinol Metab 26:689–700

    CAS  PubMed  Google Scholar 

  43. 43.

    Kinney MV, Lawn JE, Howson CP et al (2012) 15 Million preterm births annually: what has changed this year? Reprod Health 9:28

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kurki T, Laatikainen T, Salminen-Lappalainen K et al (1991) Maternal plasma corticotrophin-releasing hormone—elevated in preterm labour but unaffected by indomethacin or nylidrin. Br J Obstet Gynaecol 98:685–691

    CAS  PubMed  Google Scholar 

  45. 45.

    Langley-Evans SC, Gardner DS, Jackson AA (1996) Maternal protein restriction influences the programming of the rat hypothalamic-pituitary-adrenal axis. J Nutr 126:1578–1585

    CAS  PubMed  Google Scholar 

  46. 46.

    Li XQ, Zhu P, Myatt L et al (2014) Roles of glucocorticoids in human parturition: A controversial fact? Placenta 35:291–296

    PubMed  Google Scholar 

  47. 47.

    Lindsay RS, Lindsay RM, Edwards CR et al (1996) Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27:1200–1204

    CAS  PubMed  Google Scholar 

  48. 48.

    Lindsay RS, Lindsay RM, Waddell BJ et al (1996) Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 39:1299–1305

    CAS  PubMed  Google Scholar 

  49. 49.

    Long NM, Ford SP, Nathanielsz PW (2012) Multigenerational effects of fetal dexamethasone exposure on the hypothalamic-pituitary-adrenal axis of first- and second-generation female offspring. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2012.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mairesse J, Lesage J, Breton C et al (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol Endocrinol Metab 292:E1526–E1533

    CAS  PubMed  Google Scholar 

  51. 51.

    Mayhew TM, Jenkins H, Todd B et al (2008) Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta 29:366–373

    CAS  PubMed  Google Scholar 

  52. 52.

    Mckinlay CJ, Dalziel SR, Harding JE (2015) Antenatal glucocorticoids: where are we after forty years? J Dev Orig Health Dis 6:127–142

    CAS  PubMed  Google Scholar 

  53. 53.

    Mcternan CL, Draper N, Nicholson H et al (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86:4979–4983

    CAS  PubMed  Google Scholar 

  54. 54.

    Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13:269–277

    CAS  PubMed  Google Scholar 

  55. 55.

    Modi N, Lewis H, Al-Naqeeb N et al (2001) The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res 50:581–585

    CAS  PubMed  Google Scholar 

  56. 56.

    Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10(7):391–402

    CAS  PubMed  Google Scholar 

  57. 57.

    Monder C, Stewart PM, Lakshmi V et al (1989) Licorice inhibits corticosteroid 11 beta-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinology 125:1046–1053

    CAS  PubMed  Google Scholar 

  58. 58.

    Moss TJ, Sloboda DM, Gurrin LC et al (2001) Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol 281:R960–970

    CAS  PubMed  Google Scholar 

  59. 59.

    Murphy VE, Gibson PG, Giles WB et al (2003) Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med 168:1317–1323

    PubMed  Google Scholar 

  60. 60.

    Nih (2001) Antenatal corticosteroids revisited: repeat courses—National Institutes of Health Consensus Development Conference Statement, August 17–18, 2000. Obstet Gynecol 98:144–150

    Google Scholar 

  61. 61.

    Nuhrenberg T, Gilsbach R, Preissl S et al (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356:585–600

    PubMed  Google Scholar 

  62. 62.

    Petraglia F, Imperatore A, Challis JR (2010) Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 31:783–816

    CAS  PubMed  Google Scholar 

  63. 63.

    Plagemann A (2004) “Fetal programming” and “functional teratogenesis”: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med 32:297–305

    CAS  PubMed  Google Scholar 

  64. 64.

    Plagemann A (2005) Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 86:661–668

    CAS  PubMed  Google Scholar 

  65. 65.

    Plagemann A (2011) Maternal diabetes and perinatal programming. Early Hum Dev 87:743–747

    CAS  PubMed  Google Scholar 

  66. 66.

    Plagemann A (2011) Perinatal Programming—The State of the Art. De Gruyter, Berlin-Boston

    Google Scholar 

  67. 67.

    Plagemann A (2011) Toward a unifying concept on perinatal programming: Vegetative imprinting by environmentdependent biocybernetogenesis. In: Plagemann A (Hrsg) Perinatal Programming—The State of the Art. De Gruyter, Boston, S 243–282

    Google Scholar 

  68. 68.

    Plagemann A (2014) Perinatale Programmierung, neuro-endokrine Epigenomik und Präventive Medizin – Das Konzept der Vegetativen Prägung. Naturwiss Rundsch 67:612–625

    Google Scholar 

  69. 69.

    Plagemann A (2014) Perinatale Programmierung, neuro-endokrine Epigenomik und präventive Medizin –Das Konzept der Vegetativen Prägung. Nova Acta Leopoldina NF 120:197–225

    Google Scholar 

  70. 70.

    Plagemann A, Harder T, Brunn M et al (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587:4963–4976

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Plagemann A, Roepke K, Harder T et al (2010) Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 38:393–400

    CAS  PubMed  Google Scholar 

  72. 72.

    Plagemann A, Harder T, Schellong K et al (2012) Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab 26:641–653

    PubMed  Google Scholar 

  73. 73.

    Raikkonen K, Pesonen AK, Heinonen K et al (2009) Maternal licorice consumption and detrimental cognitive and psychiatric outcomes in children. Am J Epidemiol 170:1137–1146

    PubMed  Google Scholar 

  74. 74.

    Rancourt RC, Harris HR, Michels KB (2012) Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum Reprod 27:2208–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Rancourt RC, Harris HR, Barault L et al (2013) The prevalence of loss of imprinting of H19 and IGF2 at birth. FASEB J 27:3335–3343

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Roberts D (2010) Antenatal corticosteroids to reduce neonatal morbidity and mortality. Green Top Guidline No. 7. In: Royal College of Obstetricians and Gynecologists

    Google Scholar 

  77. 77.

    Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004454.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Saif Z, Hodyl NA, Hobbs E et al (2014) The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta. https://doi.org/10.1016/j.placenta.2014.01.012

    Article  PubMed  Google Scholar 

  79. 79.

    Sarkar S, Tsai SW, Nguyen TT et al (2001) Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by catecholamines via alpha-adrenergic signaling. Am J Physiol Regul Integr Comp Physiol 281:R1966–R1974

    CAS  PubMed  Google Scholar 

  80. 80.

    Scott NM, Hodyl NA, Osei-Kumah A et al (2011) The presence of maternal asthma during pregnancy suppresses the placental pro-inflammatory response to an immune challenge in vitro. Placenta 32:454–461

    CAS  PubMed  Google Scholar 

  81. 81.

    Seckl JR (2008) Glucocorticoids, developmental “programming” and the risk of affective dysfunction. Prog Brain Res 167:17–34

    CAS  PubMed  Google Scholar 

  82. 82.

    Seckl JR, Benediktsson R, Lindsay RS et al (1995) Placental 11 beta-hydroxysteroid dehydrogenase and the programming of hypertension. J Steroid Biochem Mol Biol 55:447–455

    CAS  PubMed  Google Scholar 

  83. 83.

    Seckl JR, Cleasby M, Nyirenda MJ (2000) Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int 57:1412–1417

    CAS  PubMed  Google Scholar 

  84. 84.

    Sibley C, Glazier J, D’souza S (1997) Placental transporter activity and expression in relation to fetal growth. Exp Physiol 82:389–402

    CAS  PubMed  Google Scholar 

  85. 85.

    Sloboda DM, Moss TJ, Li S et al (2005) Hepatic glucose regulation and metabolism in adult sheep: effects of prenatal betamethasone. Am J Physiol Endocrinol Metab 289:E721–E728

    CAS  PubMed  Google Scholar 

  86. 86.

    Stewart PM, Murry BA, Mason JI (1994) Type 2 11 beta-hydroxysteroid dehydrogenase in human fetal tissues. J Clin Endocrinol Metab 78:1529–1532

    CAS  PubMed  Google Scholar 

  87. 87.

    Stewart PM, Rogerson FM, Mason JI (1995) Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab 80:885–890

    CAS  PubMed  Google Scholar 

  88. 88.

    Strandberg TE, Andersson S, Jarvenpaa AL et al (2002) Preterm birth and licorice consumption during pregnancy. Am J Epidemiol 156:803–805

    PubMed  Google Scholar 

  89. 89.

    Sundrani DP, Chavan Gautam PM, Mehendale SS et al (2011) Altered metabolism of maternal micronutrients and omega 3 fatty acids epigenetically regulate matrix metalloproteinases in preterm pregnancy: a novel hypothesis. Med Hypotheses 77:878–883

    CAS  PubMed  Google Scholar 

  90. 90.

    Thorp JA, Jones PG, Knox E et al (2002) Does antenatal corticosteroid therapy affect birth weight and head circumference? Obstet Gynecol 99:101–108

    CAS  PubMed  Google Scholar 

  91. 91.

    Tsugita M, Iwasaki Y, Nishiyama M et al (2008) Differential regulation of 11beta-hydroxysteroid dehydrogenase type‑1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sci 83:426–432

    CAS  PubMed  Google Scholar 

  92. 92.

    Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104:71–79

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. Thorsten Braun.

Ethics declarations

Interessenkonflikt

T. Braun gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Teile der Arbeit stammen aus der Habilitationsschrift von Thorsten Braun: „Antenatale Glukokortikoid-Therapie, fetale Programmierung und die Rolle der Plazenta“ (2017). https://refubium.fu-berlin.de/bitstream/handle/fub188/2044/Habil_Thorsten_Braun.pdf?sequence=1&isAllowed=y.

Redaktion

K. Vetter, Berlin

R. Zimmermann, Zürich

Caption Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braun, T. Intrauterine Prägung – Konzept und Bedeutung der Plazenta. Gynäkologe (2020). https://doi.org/10.1007/s00129-020-04621-3

Download citation

Schlüsselwörter

  • Fetale Programmierung
  • Glukokortikoide
  • Lungenreifeinduktion
  • Stress
  • Maternofetaler Austausch
  • Fetale Wachstumsrestriktion

Keywords

  • Fetal programming
  • Glucocorticoids
  • Induced lung maturation
  • Stress
  • Maternal-fetal exchange
  • Fetal growth restriction