Diclofenac and Ibuprofen Determination in Sewage Sludge Using a QuEChERS Approach: Occurrence and Ecological Risk Assessment in Three Nigerian Wastewater Treatment Plants

Abstract

A quick, easy, cheap, effective, rugged and safe (QuEChERS) method was optimized for the extraction of non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and ibuprofen from sewage sludge. Dispersive-solid phase extraction (d-SPE) was employed for sample clean-up. Instrumental analysis was performed by high-performance liquid chromatography. Ecological risk was assessed for four trophic levels: fish, daphnia, algae and bacteria. The method limits of quantification for diclofenac and ibuprofen were 0.43 µg g− 1 and 0.45 µg g− 1, respectively. Correlation coefficients were above 0.999. Extraction recoveries ranged from 70 to 118 % and satisfactory inter-day reproducibility (% RSD) of < 18 % was obtained. Diclofenac and ibuprofen were measured up to 1.02 µg g− 1 and 6.6 µg g− 1, respectively in sewage sludge from three Nigerian wastewater treatment plants (WWTPs). Ibuprofen posed high risk to fish, daphnia, algae and bacteria. This work presents the first report on the ecological risk assessment of diclofenac and ibuprofen in sewage sludge from Nigerian WWTPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ajibola AS, Tisler S, Zwiener C (2020) Simultaneous determination of multiclass antibiotics in sewage sludge based on QuEChERS extraction and liquid chromatography tandem mass spectrometry. Analytical Methods 12:576–586. https://doi.org/10.1039/c9ay02188d

    CAS  Article  Google Scholar 

  2. Ajibola AS, Amoniyan OA, Ekoja FO, Ajibola FO (2020) QuEChERS Approach for the Analysis of Three Fluoroquinolone Antibiotics in Wastewater: Concentration Profiles and Ecological Risk in Two Nigerian Hospital Wastewater Treatment Plants. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-020-00789-w

    Article  Google Scholar 

  3. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  Article  Google Scholar 

  4. Ashfaq M, Khan KN, Saif Ur Rehman M, Mustafa G, Nazar MF, Sun Q, Yu CP (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39. https://doi.org/10.1016/j.ecoenv.2016.10.029

    CAS  Article  Google Scholar 

  5. Conaghan PG (2012) A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol Int 32:1491–1502. https://doi.org/10.1007/s00296-011-2263-6

    CAS  Article  Google Scholar 

  6. Du J, Mei C, Ying G, Xu M (2016) Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia magna. Bull Environ Contam Toxicol 97:84–90. https://doi.org/10.1007/s00128-016-1806-7

    CAS  Article  Google Scholar 

  7. EU (2013) Directive 2013/39/EU of the European Parliament and of the Council. Available in www format: URL: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF

  8. European Commission (2003) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) no 1488/94 on risk assessment for existing substances, part II, (Brussels, Belgium)

  9. Gago-Ferrero P, Borova V, Dasenaki ME, Thomaidis NS (2015) Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 407: 4287–4297. https://doi.org/10.1007/s00216-015-8540-6

    CAS  Article  Google Scholar 

  10. Guerra P, Kim M, Shah A, Alaee M, Smyth SA (2014) Occurrence and fate of antibiotics, analgelsics/anti-inflammatory and antifungal compounds in wastewater treatment processes. Sci Total Environ 473–474:235–243. https://doi.org/10.1016/j.scitotenv.2013.12.008

    CAS  Article  Google Scholar 

  11. Guo C, Wang M, Xiao H, Huai B, Wang F, Pan G, Liao X, Liu Y (2016) Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. J Chromatogr B 1027:110–118. https://doi.org/10.1016/j.jchromb.2016.05.034

    CAS  Article  Google Scholar 

  12. Hlengwa NB, Mahlambi PN (2020) Ultrasonic followed by solid phase extraction and liquid chromatography-photodiode array for determination of pharmaceutical compounds in sediment and soil. Bull Environ Contam Toxicol 104:464–470. https://doi.org/10.1007/s00128-020-02829-6

    CAS  Article  Google Scholar 

  13. Lehotay SJ, Son KA, Kwon H, Koesukwiwata U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217:2548–2560. https://doi.org/10.1016/j.chroma.2010.01.044

    CAS  Article  Google Scholar 

  14. Lonappan L, Pulicharla R, Rouissi T, Brar SK, Verma M, Surampalli RY, Valero JR (2016) Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption—atmospheric pressure chemical ionization-tandem mass spectrometry approach in comparison with an established liquid chromatography electrospray ionization–tandem mass spectrometry method. J Chromatogr A 1433:106–113. https://doi.org/10.1016/j.chroma.2016.01.030

    CAS  Article  Google Scholar 

  15. Martin J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47. https://doi.org/10.1016/j.jhazmat.2012.04.068

    CAS  Article  Google Scholar 

  16. Martín J, Santos JL, Aparicio I, Alonso E (2010) Multi-residue method for the analysis of pharmaceutical compounds in sewage sludge, compost and sediments by sonication-assisted extraction and LC determination. J Sep Sci 33:1760–1766. https://doi.org/10.1002/jssc.200900873

    CAS  Article  Google Scholar 

  17. Morales-Toledo A, Afonso-Olivares C, Montesdeoca-Esponda S, Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ (2016) Optimization and development of SPE and MAE combined with UHPLC-FD for the determination of acetylsalicylic acid, naproxen, ibuprofen and gemfibrozil in sewage and sludge samples. Curr Anal Chem 12:545–552. https://doi.org/10.2174/1573411012666160113235153

    CAS  Article  Google Scholar 

  18. Nannou C, Ofrydopoulou A, Heath D, Heath E, Lambropoulou D (2019) QuEChERS—A green alternative approach for the determination of pharmaceuticals and personal care products in environmental and food samples. In: Płotka-Wasylka J, Namieśnik J (eds) Green Analytical Chemistry, Green Chemistry and Sustainable Technology. Springer, Singapore, pp 395–430. https://doi.org/10.1007/978-981-13-9105-7_14

    Google Scholar 

  19. Nannou CI, Kosma CI, Albanis TA (2015) Occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment. Int J Environ Anal Chem 95:1242–1262. https://doi.org/10.1080/03067319.2015.1085520

    CAS  Article  Google Scholar 

  20. Nicholls A (2016) Confidence limits, error bars and method comparison in molecular modeling. Part 2: comparing methods. J Comput Aided Mol Des 30:103–126. https://doi.org/10.1007/s10822-016-9904-5

    CAS  Article  Google Scholar 

  21. Olarinmoye O, Bakare A, Ugwumba O, Hein A (2016) Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos. Nigeria Journal of Environmental Chemistry Ecotoxicology 8:14–24. DOI:https://doi.org/10.5897/JECE2015.0364

    CAS  Article  Google Scholar 

  22. Pérez-Lemus N, López-Serna R, Pérez-Elvira SI, Barrado E (2019) Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: a critical review. Anal Chimica Acta. https://doi.org/10.1016/j.aca.2019.06.044

    Article  Google Scholar 

  23. Peysson W, Vulliet E (2013) Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. J Chromatogr A 1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057

    CAS  Article  Google Scholar 

  24. Psomas G (2020) Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity. Coord Chem Rev 412:213259. https://doi.org/10.1016/j.ccr.2020.213259

    CAS  Article  Google Scholar 

  25. Ra JS, Oh SY, Lee BC, Kim SD (2008) The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ Int 34:184–192. https://doi.org/10.1016/j.envint.2007.08.001

    CAS  Article  Google Scholar 

  26. Rossini D, Ciofi L, Ancillotti C, Checchini L, Bruzzoniti MC, Rivoira L, Fibbi D, Orlandini S, Del Bubba M (2016) Innovative combination of QuEChERS extraction with on-line solid-phase extract purification and pre-concentration, followed by liquid chromatography-tandem mass spectrometry for the determination of non-steroidal anti-inflammatory drugs and their metabolites in sewage sludge. Anal Chim Acta 935:269–281. https://doi.org/10.1016/j.aca.2016.06.023

    CAS  Article  Google Scholar 

  27. Saleh A, Larsson E, Yamini Y, Jönsson J (2011) Hollow fiber liquid phase microextraction as a preconcentration and clean-up step after pressurized hot water extraction for the determination of non-steroidal anti-inflammatory drugs in sewage sludge. J Chromatogr A 1218:1331–1339. https://doi.org/10.1016/j.chroma.2011.01.011

    CAS  Article  Google Scholar 

  28. Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395. https://doi.org/10.1016/S0378-4274(03)00257-1

    CAS  Article  Google Scholar 

  29. Stasinakis AS, Thomaidis NS, Arvaniti OS, Asimakopoulos AG, Samaras VG, Ajibola A, Mamais D, Lekkas TD (2013) Contribution of primary and secondary treatment on the removal of benzothiazoles, benzotriazoles, endocrine disruptors, pharmaceuticals and perfluorinated compounds in a sewage treatment plant. Sci Total Environ 463–464:1067–1075. https://doi.org/10.1016/j.scitotenv.2013.06.087

    CAS  Article  Google Scholar 

  30. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084. https://doi.org/10.1016/j.watres.2004.07.015

    CAS  Article  Google Scholar 

  31. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment - a review. Science. of the Total Environment 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    CAS  Article  Google Scholar 

  32. Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge Occurrence and environmental risk in the case of application on soil — A critical review. Science of the Total Environment 538:750–767. https://doi.org/10.1016/j.scitotenv.2015.08.108

    CAS  Article  Google Scholar 

  33. Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant-A review. Environment International 69:28–39. https://doi.org/10.1016/j.envint.2014.03.021

    CAS  Article  Google Scholar 

  34. Wee SY, Aris AZ, Yusoff FMd, Praveena SM (2019) Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Sci Total Environ 671:431–442. https://doi.org/10.1016/j.scitotenv.2019.03.243

    CAS  Article  Google Scholar 

  35. Zhang K, Yuan G, Werdich AA, Zhao Y (2020) Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations. Environ Pollut 258:113613. https://doi.org/10.1016/j.envpol.2019.113613

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the efforts of O. Atanlusi, V.I. Adeyemo and M.O. Ajao. Officials at the investigated wastewater treatment plants are acknowledged for assistance in the collection of sewage sludge samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akinranti S. Ajibola.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 537 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajibola, A.S., Fawole, S.T., Ajibola, F.O. et al. Diclofenac and Ibuprofen Determination in Sewage Sludge Using a QuEChERS Approach: Occurrence and Ecological Risk Assessment in Three Nigerian Wastewater Treatment Plants. Bull Environ Contam Toxicol (2021). https://doi.org/10.1007/s00128-021-03139-1

Download citation

Keywords

  • Non‐steroidal anti‐inflammatory drugs
  • Sewage sludge
  • QuEChERS
  • d-SPE
  • Ecological risk assessment
  • Nigeria