Inhibition of Glutathione Reductase Activity from Baker’s Yeast (Saccharomyces cerevisiae) By Copper(II) Oxide Nanoparticles and Copper(II) Chloride

Abstract

In this study, glutathione reductase (GR) from baker’s yeast (Saccharomyces cerevisiae) was exposed to 0, 25, 50, 100, 250 and 500 mg/L copper(II) oxide nanoparticles (CuO NPs) and copper(II) chloride (CuCl2). Changes in GR% activity upon exposure to 25, 50, 100, 250 and 500 mg/L CuO NPs and CuCl2 were found to be + 0.3, − 3.4, − 8.1, − 25.7 and − 37.4 and − 60.7, − 72.7, − 77.8, − 85.3 and − 90.6, respectively. The 50% inhibition concentration (IC50) was 625 ppm (78.6 × 10−4 M) for CuO NPs and 21 ppm (1.56 × 10−4 M) for CuCl2. Moreover, CuO NPs and CuCl2 inhibited GR competitively and noncompetitively, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MAS (2015) Comparative toxicity of copper oxide bulk and nano particles in nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57

    CAS  Article  Google Scholar 

  2. Burke J, Handy RD (2005) Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss. J Exp Biol 208(2):391–407

    CAS  Article  Google Scholar 

  3. Canlı EG, Canlı M (2017) Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turk J Zool 41:259–266

    Article  Google Scholar 

  4. Canli EG, Atli G, Canli M (2017) Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ Toxicol Pharmacol 50:145–150

    CAS  Article  Google Scholar 

  5. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    CAS  Article  Google Scholar 

  6. Elia AC, Magara G, Righetti M, Dörr AJM, Scanzio T, Pacini N, Abete MC, Prearo M (2017) Oxidative stress and related biomarkers in cupric and cuprous chloride-treated rainbow trout. Environ Sci Pollut Res 24:10205–10219

    CAS  Article  Google Scholar 

  7. Fersht A (ed) (1985) Enzyme structure and mechanism. W.H. Freeman and Company, New York

    Google Scholar 

  8. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7(1):347–354

    CAS  Article  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  10. Hoseini SM, Hedayati A, Mirghaed AT, Ghelichpour M (2016) Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Exp Toxicol Pathol 68:493–503

    CAS  Article  Google Scholar 

  11. Hu HL, Ni XS, Duff-Canning S, Wang XP (2016) Oxidative damage of copper chloride overload to the cultured rat astrocytes. Am J Transl Res 8(2):1273–1280

    CAS  Google Scholar 

  12. Husain N, Mahmood R (2019) Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res 26:20654–20668

    CAS  Article  Google Scholar 

  13. Janrao KK, Gadhave MV, Banerjee SK, Gaikwad DD (2014) Nanoparticle induced nanotoxicity: an overview. Asian J Biomed Pharma Sci 4:1–7

    CAS  Article  Google Scholar 

  14. Karadağ H, Eroğlu E, Kırılmış C (2019) Determination of glutathione reductase activity changes exposed to some 2-aminothiazole derivatives. Cumhuriyet Sci J 40(1):136–140

    Google Scholar 

  15. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    CAS  Article  Google Scholar 

  16. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Article  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Article  Google Scholar 

  18. Nelson DL, Cox MM (2004) Lehninger principles of biochemistry, 4th edn. W. H. Freeman, New York

    Google Scholar 

  19. Scheiber IF, Schmidt MM, Dringen R (2010) Zinc prevents the copper-induced damage of cultured astrocytes. Neurochem Int 57:314–322

    CAS  Article  Google Scholar 

  20. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568

    CAS  Article  Google Scholar 

  21. Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish: a review. Environ Sci Pollut Res 20:2133–2149

    CAS  Article  Google Scholar 

  22. Tandoğan B, Ulusu NN (2007) The inhibition kinetics of yeast glutathione reductase by some metal ions. J Enzym Inhib Med Chem 22(4):489–495

    Article  Google Scholar 

  23. Thake THF, Webb JR, Nash A, Rappoport JZ, Notman R (2013) Permeation of polystyrene nanoparticles across model lipid bilayer membranes. Soft Matter 9(43):10265–10274

    CAS  Article  Google Scholar 

  24. Tunçsoy M, Duran S, Ay Ö, Cicik B, Erdem C (2017) Effects of copper oxide nanoparticles on antioxidant enzyme activities and on tissue accumulation of Oreochromis niloticus. Bull Environ Contam Toxicol 99:360–364

    Article  Google Scholar 

  25. Turnlund JR (1999) Copper. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. Williams and Wilkins, Baltimore, p 241

    Google Scholar 

Download references

Acknowledgement

The author would like to thank Enago (www.enago.com) for the English language review and thank to Atatürk University East Anatolia High Technology Application and Research Center (DAYTAM) for characterisation of CuO NPs using the transmission electron microscope (TEM) and Zeta Sizer and thank to Adıyaman University Central Research Laboratory Application and Research Center (ADYÜMLAB) for actual Cu concentration determination using inductively coupled plasma-mass spectrometry (ICP-MS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hasan Karadag.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karadag, H. Inhibition of Glutathione Reductase Activity from Baker’s Yeast (Saccharomyces cerevisiae) By Copper(II) Oxide Nanoparticles and Copper(II) Chloride. Bull Environ Contam Toxicol (2021). https://doi.org/10.1007/s00128-021-03136-4

Download citation

Keywords

  • Copper(II) chloride
  • Copper(II) oxide nanoparticles
  • Glutathione reductase
  • Nanoparticles