Ameliorating Effect of Bicarbonate on Salinity Induced Changes in the Growth, Nutrient Status, Cell Constituents and Photosynthetic Attributes of Microalga Chlorella vulgaris

Abstract

The cells of Chlorella vulgaris exhibited NaCl (0–400 mM) induced decrease in the growth, protein, chlorophyll, carbohydrate and total organic carbon, whereas total lipid and proline content increased with rising level of NaCl. Addition of NaHCO3 (20 mM) exhibited antagonistic effect against the adverse effect of salinity on the growth, level of macromolecules except proline. The SEM–EDS analysis of NaCl treated cells exhibited morphological variations as well as reduced accumulation of Na and Cl due to the presence of NaHCO3. The results on chlorophyll fluorescence induction kinetics revealed NaCl induced decline in the photosynthetic performance and quantum yield, while non-photochemical quenching of chlorophyll was enhanced, particularly at lower concentrations of NaCl. Addition of NaHCO3 to NaCl treated cells exhibited further increase in the non-photochemical quenching values. Thus, these results demonstrated that adverse impact of NaCl on the C. vulgaris cells was significantly mitigated in the presence of bicarbonate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Fv/Fm:

Quantum yield

NPQ:

Non-photochemical quenching

qE:

Energy dependent quenching

PIabs:

Photosynthetic performance index

References

  1. Ahmad I, Hellebust JA (1986) The role of glycerol and inorganic ions in osmoregulatory responses of the euryhaline flagellate Chlamydomonas pulsatilla Wollenweber. Plant Physiol 82:406–410. https://doi.org/10.1104/pp.82.2.406

    CAS  Article  Google Scholar 

  2. Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbAGenes in Synechocystis. Plant Physiol 130:1443–1453. https://doi.org/10.1104/pp.011114

    CAS  Article  Google Scholar 

  3. Alvensleben V, Magnusson M, Heimann K (2016) Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol 28:861–876. https://doi.org/10.1007/s10811-015-0666-6

    CAS  Article  Google Scholar 

  4. Asulabh KS, Supriya G, Ramachandra TV (2019) Lipids and Edible Oils: Properties, processing and applications. Academic Press, London

    Google Scholar 

  5. Bates LS, Waklren RP, Teare ID (1973) Rapid determination of free proline water stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  6. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90. https://doi.org/10.3389/fbioe.2014.00090

    Article  Google Scholar 

  7. Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnol Rep 10:117–125. https://doi.org/10.1016/j.btre.2016.04.001

    Article  Google Scholar 

  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Article  Google Scholar 

  9. Brüggemann N, Gessler A, Kayler ZE, Keel S, Badeck FW, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosci Discuss 8:3619–3695. https://doi.org/10.5194/bg-8-3457-2011

    CAS  Article  Google Scholar 

  10. Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants. Trends Biotechnol 26:351. https://doi.org/10.1016/j.tibtech.2008.04.002

    CAS  Article  Google Scholar 

  11. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.018

    Article  Google Scholar 

  12. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Article  Google Scholar 

  13. Fatima T, Khan MA, Choudhary M (2007) Impact of environmental pollution on cyanobacterial proline content. J Appl Phycol 19:625–629. https://doi.org/10.1007/s10811-007-9195-2

    Article  Google Scholar 

  14. Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautrona E, Villanova V, Rolland N, Seigneurin-Berny D (2014) Ions channels/ transporters and chloroplast regulation. Cell Calcium. https://doi.org/10.1016/j.ceca.2014.10.002

    Article  Google Scholar 

  15. Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723. https://doi.org/10.1074/jbc.271.30.17718

    CAS  Article  Google Scholar 

  16. Gashi B, Babani F, Kongjika E (2013) Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramondaserbica and Ramondanathaliae during dehydration and rehydration. Physiol Mol Biol Plants. 19:333–341. https://doi.org/10.1007/s12298-013-0175-5

    CAS  Article  Google Scholar 

  17. Grobler E (1979) The use of the Walkley-Black method for organic carbon determination as a procedure for estimating algal yields. Water SA 5(3):138–143

    Google Scholar 

  18. Haghjou MM, Colville L, Smirnoff N (2014) The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools. Plant Physiol Biochem 84:96–104. https://doi.org/10.1016/j.plaphy.2014.08.024

    CAS  Article  Google Scholar 

  19. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2017) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/psb.21949

    CAS  Article  Google Scholar 

  20. Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123:1001–1011. https://doi.org/10.1016/j.cell.2005.09.030

    CAS  Article  Google Scholar 

  21. Ho SH, Nakanishi A, Ye X, Chang JS, Hara K, Hasunuma T, Kondo A (2014) Optimizing biodiesel production in marine Chlamydomona ssp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol Biofuels 7:97. https://doi.org/10.1186/1754-6834-7-97

    CAS  Article  Google Scholar 

  22. Khona DK, Shirolikar SM, Gawde KK, Hom E, Deodhar MA, D’Souza JS (2016) Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res 16:434–448. https://doi.org/10.1016/j.algal.2016.03.035

    Article  Google Scholar 

  23. Kirrolia A, Bishnoi NR, Singh N (2011) Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. J Algal Biomass Util 2:28–34. https://doi.org/10.4236/nr.2014.51002

    CAS  Article  Google Scholar 

  24. Klimov VV, Baranov SV (2001) Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim Biophys Acta 1503:187–196

    CAS  Article  Google Scholar 

  25. Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002

    CAS  Article  Google Scholar 

  26. Lowry OH, Farr AL, Randall RJ, Rosebrough NJ (1951) Protein measurement with the folin phenol reagent. J Boil Chem 193:265–275

    CAS  Article  Google Scholar 

  27. Lu C, Vonshak A (2002) Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413. https://doi.org/10.1034/j.1399-3054.2002.1140310.x

    CAS  Article  Google Scholar 

  28. Nakanishi A, Shimpei A, Ho SH, Chen CY, Chang JS, Hasunuma T, Kondo A (2014) Development of lipid productivities under different CO2conditionsof marine microalgae Chlamydomonas sp. Biores Technol 152:247–325. https://doi.org/10.1016/j.biortech.2013.11.009

    CAS  Article  Google Scholar 

  29. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441. https://doi.org/10.1007/s00253-011-3170-1

    CAS  Article  Google Scholar 

  30. Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Biores Technol 244:1216–1226. https://doi.org/10.1016/j.biortech.2017.05.058

    CAS  Article  Google Scholar 

  31. Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A, Mishra S (2015) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Biores Technol 189:341–348. https://doi.org/10.1016/j.biortech.2015.04.017

    CAS  Article  Google Scholar 

  32. Pandit PR, Fulekar MH, Karuna MSL (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res 24:13437–13451. https://doi.org/10.1007/s11356-017-8875-y

    CAS  Article  Google Scholar 

  33. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safety 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    CAS  Article  Google Scholar 

  34. Pattanagul W, Thitisaksaku M (2008) Effect of salinity on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Experimental Biol 46:736–742

    CAS  Google Scholar 

  35. Peng L, Zhang Z, Lan CQ, Basak A, Bond N, Ding X, Du J (2017) Alleviation of oxygen stress on Neochlorisoleo abundans: effects of bicarbonate and pH. J Appl Phycol 29:143–152. https://doi.org/10.1007/s10811-016-0931-3

    CAS  Article  Google Scholar 

  36. Prakash D, Nawani NN (2014) A rapid and improved technique for scanning electron microscopy of actinomycetes. J Microbial Methods 99:54–57. https://doi.org/10.1016/j.mimet.2014.02.005

    CAS  Article  Google Scholar 

  37. Rismani S, Shariati M (2012) Changes of the total lipid and omega-3 fatty acid contents in two microalgae Dunaliella Salina and Chlorella Vulgaris under salt stress. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2017160555

    Article  Google Scholar 

  38. Ruangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265. https://doi.org/10.1016/j.biortech.2011.07.025

    CAS  Article  Google Scholar 

  39. Salbitani G, Bolinesi F, Affuso M, Carraturo F, Mangoni O, Carfagna S (2020) Rapid and positive effect of bicarbonate addition on growth and photosynthetic efficiency of the green microalgae Chlorella Sorokiniana (Chlorophyta, Trebouxiophyceae). Appl Sci 13:4515. https://doi.org/10.3390/app10134515

    CAS  Article  Google Scholar 

  40. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with new type of modulation flourometer. Photosynth Res 10:51–62. https://doi.org/10.1007/BF00024185

    CAS  Article  Google Scholar 

  41. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. https://doi.org/10.3390/en5051532

    CAS  Article  Google Scholar 

  42. Shetty P, Gitau MM, Maróti G (2019) Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8:12–1657. https://doi.org/10.3390/cells8121657

    CAS  Article  Google Scholar 

  43. Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, Gothandam KM (2018) Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci Rep. https://doi.org/10.1038/s41598-018-25417-5

    Article  Google Scholar 

  44. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a fluorescence. pp 321–362. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3218-9_12

  45. Štroch M, Špunda V, KurasovaI, (2004) Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica. 42:323–337. https://doi.org/10.1023/B:PHOT.0000046149.97220.18

    Article  Google Scholar 

  46. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Biores Technol 155:204–212. https://doi.org/10.1016/j.biortech.2013.12.109

    CAS  Article  Google Scholar 

  47. Szabó I, Bergantino E, Giacometti GM (2005) Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep 6:629–634. https://doi.org/10.1038/sj.embor.7400460

    CAS  Article  Google Scholar 

  48. Van Heerden PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot 61:124–136. https://doi.org/10.1016/j.envexpbot.2007.05.005

    CAS  Article  Google Scholar 

  49. Ware MA, Belgio E, Ruban AV (2015) Photoprotective capacity of non-photochemical quenching in. plants acclimated to different light intensities. Photosynth Res 126:261–274. https://doi.org/10.1007/s11120-015-0102-4

    CAS  Article  Google Scholar 

  50. White DA, Widdicombe CE, Somerfield PJ, Airs RL, Tarran GA, Maud JL, Atkinson A (2015) The combined effects of seasonal community succession and adaptive algal physiology on lipid profiles of coastal phytoplankton in the Western English Channel. Mar Chem 177:638–652. https://doi.org/10.1016/j.marchem.2015.10.005

    CAS  Article  Google Scholar 

  51. Xin L, Hong-Ying H, Yu-Ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Biores Technol 102:3098–3102. https://doi.org/10.1016/j.biortech.2010.10.055

    CAS  Article  Google Scholar 

  52. Yamaguchi T, Blumwald E (2020) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620. https://doi.org/10.1016/j.tplants.2005.10.002

    CAS  Article  Google Scholar 

  53. Yang H, He Q, Hu C (2015) Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50. Biores Technol 187:221–227. https://doi.org/10.1016/j.biortech.2015.03.125

    CAS  Article  Google Scholar 

  54. Yilancioglu K, Cokol M, PastirmaciI EB, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE. https://doi.org/10.1371/journal.pone.0091957

    Article  Google Scholar 

  55. Yu KL, Show PL, Ong HC, Ling TC, Lan JC, Chen WH, Chang JS (2017) Microalgae from wastewater treatment to biochar-feedstock preparation and conversion technologies. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2017.07.060

    Article  Google Scholar 

  56. Zhang SY, Zhang GC, Gu SY, Xia JB, Zhao JK (2010) Critical responses of photosynthetic efficiency of gold spur apple tree to soil water variation in semiarid loess hilly area. Photosynthetica. 48:589–595

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the Head, Department of Environmental Science, B.B. Ambedkar University, Lucknow (UP), for providing required laboratory facilities. We also acknowledge the help of Director, USIC, for providing SEM-EDS facility. Ms. Nisha Yadav is also grateful to BBAU for providing non-Net UGC fellowship during the course of this work.

Author information

Affiliations

Authors

Contributions

NY; execution and deigning of the experiments, NG; Technical assistance and writing; DPS; Planning and overall supervision.

Corresponding author

Correspondence to D. P. Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Gupta, N. & Singh, D.P. Ameliorating Effect of Bicarbonate on Salinity Induced Changes in the Growth, Nutrient Status, Cell Constituents and Photosynthetic Attributes of Microalga Chlorella vulgaris. Bull Environ Contam Toxicol (2021). https://doi.org/10.1007/s00128-021-03135-5

Download citation

Keywords

  • Cell constituents
  • Fast chlorophyll fluorescence induction kinetics
  • Photosynthetic performance
  • Salinity stress
  • SEM–EDS
  • Sodium bicarbonate