Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt

Abstract

In the current work, we investigated the concentration of Ni and Pb in different organs of Phragmites australis to evaluate its potential application as a phytoremediator to remove these two metals from contaminated water and sediment in Lake Burullus (a Ramsar site in Egypt). Above- and below-ground biomass of P. australis, water and sediment were sampled monthly for 1 year at six sites of Lake Burullus (three sites represent each of the northern and southern parts of the lake) using six randomly distributed quadrats (each of 0.5 × 0.5 m) at each sampling site. Significant variation was detected for Ni and Pb concentrations in the sediments and waters between the northern and southern sites of the lake. The biomass of P. australis in the southern sites was greater than that in the northern sites; in addition, the above-ground biomass was higher than the below-ground biomass. The above-ground organs accumulated higher concentrations of Ni and Pb than the below-ground organs. The Ni and Pb standing stocks data indicated that the organs of P. australis extracted higher amounts of Ni and Pb per its area from the southern rather than the northern sites. In the current study, the Ni and Pb above-ground standing stocks increased from the early growing season (February) and reached its peak during August and then decreased. The highest monthly Ni and Pb standing stock (18.2 and 18.4 g m− 2, respectively) was recorded in the above-ground organs of plants in the southern sites in August. The bioaccumulation factor of Ni was 157.6 and 153.4 in the northern and southern sites, respectively, whereas that of Pb was 175.3 and 158.3. The translocation factor of Ni and Pb from the below- to above-ground organs was generally > 1. Thus, this reed species is a potential candidate for Ni and Pb phytoextraction. Based on our results, P. australis could be used for the extraction of Ni and Pb to reduce the pollution in Lake Burullus, if the above-ground biomass is harvested at its maximum value in August, as was the case regarding the maximum standing stock of Ni and Pb.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel-Shafy H, Hegemann W, Teiner A (1994) Accumulation of metals by vascular plants. Environ Manage Health 5:21–24

    Article  Google Scholar 

  2. Ahmad SS, Reshi ZA, Shah MA, Rashid I, Ara R, Andrabi SMA (2014) Phytoremediation potential of Phragmites australis in Hokersar Wetland: a Ramsar site of Kashmir Himalaya. Int J Phytoremediat 16:1183–1191

    CAS  Article  Google Scholar 

  3. Ali EM (2011) Impact of drain water on water quality and eutrophication status of Lake Burullus, Egypt, a southern Mediterranean lagoon. Afr J Aquat Sci 36:267–277

    Article  Google Scholar 

  4. Allen S (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, London

    Google Scholar 

  5. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  6. Atkin OK, Loveys BR, Atkinson LJ, Pons TL (2006) Phenotypic plasticity and growth temperature: understanding interspecific variability. J Exp Bot 57:267–281

    CAS  Article  Google Scholar 

  7. Bello AO, Tawabini BS, Khalil AB, Boland CR, Saleh TA (2018) Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng 120:126–133

    Article  Google Scholar 

  8. Bonanno G (2013) Comparative performance of trace element bioaccumulation and bio- monitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130

    CAS  Article  Google Scholar 

  9. Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645

    CAS  Article  Google Scholar 

  10. Bonanno G, Vymazal J (2017) Compartmentalization of potentially hazardous elements in macrophytes: insights into capacity and efficiency of accumulation. J Geochem Explor 181:22–30

    CAS  Article  Google Scholar 

  11. Bonanno G, Borg JA, Di Martino V (2017) Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Sci Total Environ 576:796–806

    CAS  Article  Google Scholar 

  12. Bonanno G, Vymazal J, Cirelli GL (2018) Translocation, accumulation and bioindication of trace elements in wetland plants. Sci Total Environ 631–632:252–261

    Article  CAS  Google Scholar 

  13. Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin ex. Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    CAS  Article  Google Scholar 

  14. Branzini A, González RS, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manage 102:50–54

    CAS  Article  Google Scholar 

  15. Cicero-Fernández D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B (2017) Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis. New Biotechnol 38:56–64

    Article  CAS  Google Scholar 

  16. Du Laing G, Tack FMG, Verloo MG (2003) Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal Chim Acta 497:191–198

    CAS  Article  Google Scholar 

  17. Du Laing G, Van de Moortel AMK, Moors W, De Grauwe P, Meers E, Tack FMG, Verloo MG (2009) Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol Eng 35:310–318

    Article  Google Scholar 

  18. Duda-Chodak A, Baszczyk U (2008) The impact of nickel on human health. J Elementol 13:685–696

    Google Scholar 

  19. Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    CAS  Article  Google Scholar 

  20. Eid EM, Shaltout KH (2014) Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin ex. Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecol Eng 73:17–25

    Article  Google Scholar 

  21. Eid EM, Shaltout KH (2016) Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int J Phytoremediat 18:1075–1085

    CAS  Article  Google Scholar 

  22. Eid EM, Shaltout KH, Al-Sodany YM, Soetaert K, Jensen K (2010) Modeling growth, carbon allocation and nutrient budget of Phragmites australis in Lake Burullus, Egypt. Wetlands 30:240–251

    Article  Google Scholar 

  23. Eid EM, Shaltout KH, El-Sheikh MA, Asaeda T (2012) Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspective for phytoremediation. Flora 207:783–794

    Article  Google Scholar 

  24. Eid EM, Galal TM, Sewelam NA, Talha NI, Abdallah SM (2020a) Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ Sci Pollut Res 27:12138–12151

    CAS  Article  Google Scholar 

  25. Eid EM, Shaltout KH, Al-Sodany YM, Haroun SA, Galal TM, Ayed H, Khedher KM, Jensen K (2020b) Seasonal potential of Phragmites australis in nutrient removal to eliminate the eutrophication in Lake Burullus, Egypt. J Freshwater Ecol 35:135–155

    CAS  Article  Google Scholar 

  26. Eid EM, Galal TM, Shaltout KH, El-Sheikh MA, Asaeda T, Alatar AA, Alfarhan AH, Alharthi A, Alshehri AMA, Picó Y, Barcelo D (2020c) Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. Sci Total Environ 714:136603

    CAS  Article  Google Scholar 

  27. Eid EM, Shaltout KH, Al-Sodany YM, Haroun SA, Galal TM, Ayed H, Khedher KM, Jensen K (2020d) Common reed (Phragmites australis (Cav.) Trin ex. Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: a biomonitoring approach. Ecol Eng 148:105787

    Article  Google Scholar 

  28. El-Zeiny A, El-Kafrawy S (2017) Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. Egypt J Remote Sens Space Sci 20:S49–S56

    Google Scholar 

  29. Elsayed FA, Okbah MA, El-Syed SM, Eissa MA, Goher ME (2019) Nutrient salts and eutrophication assessment in Northern Delta lakes: case study Burullus Lake, Egypt. Egypt J Aquat Biol Fish 23:145–163

    Article  Google Scholar 

  30. ElTohamy WS, Abdel Aziz NEM, El Ghobashy AE, Alzeny A (2014) Water quality assessment of Burullus Lake using multivariate analysis. World J Fish Mar Sci 6:564–572

    Google Scholar 

  31. Galal TM, Shehata HS (2016) Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Int J Phytoremediat 18:1221–1230

    CAS  Article  Google Scholar 

  32. Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017a) Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremediat 19:992–999

    CAS  Article  Google Scholar 

  33. Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017b) Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environ Sci Pollut Res 24:21636–21648

    CAS  Article  Google Scholar 

  34. Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int J Phytoremediat 20:440–447

    CAS  Article  Google Scholar 

  35. Gilbert UA, Emmanuel IU, Adebanjo AA, Olalere GA (2011) Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenergy 35:2517–2525

    Article  CAS  Google Scholar 

  36. Granéli W, Weisner SE, Sytsma MD (1992) Rhizome dynamics and resource storage in Phragmites australis. Wetlands Ecol Manage 1:239–247

    Article  Google Scholar 

  37. Greenway M, Woolley A (1999) Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng 12:39–55

    Article  Google Scholar 

  38. Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities - a review. Environ Sci Pollut Res 26:12673–12688

    CAS  Article  Google Scholar 

  39. Hedfi A, Mahmoudi E, Boufahja F, Beyrem H, Aissa P (2007) Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bull Environ Contam Toxicol 79:345–349

    CAS  Article  Google Scholar 

  40. Ho YB (1979) Shoot development and production studies of Phragmites australis (Cav.) Trin. ex Steudel in Scottish lochs. Hydrobiologia 64:215–222

    Article  Google Scholar 

  41. Hocking PJ (1989) Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Aust J Mar Freshwater Res 40:421–444

    CAS  Article  Google Scholar 

  42. Jastrzębska M, Cwynar P, Polechoński R, Skwara T (2010) The content of heavy metals (Cu, Ni, Cd, Pb, Zn) in common reed (Phragmites australis) and floating pondweed (Potamogeton natans). Pol J Environ Stud 19:243–246

    Google Scholar 

  43. Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  44. Karunaratne S, Asaeda T, Yutani K (2003) Growth performance of Phragmites australis in Japan: Influence of geographic gradient. Environ Exp Bot 50:51–66

    Article  Google Scholar 

  45. Kassas M (2002) Management plan for burullus protectorate area. MedWetCoast, Global Environmental Facility (GEF) and Egyptian Environmental Affairs Agency (EEAA), Cairo

    Google Scholar 

  46. Kim IS, Kang HK, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243

    CAS  Article  Google Scholar 

  47. Lambertini C, Gustafsson MHG, Frydenberg J, Speranza M, Brix H (2008) Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquat Bot 88:160–170

    CAS  Article  Google Scholar 

  48. Li HB, Cui XY, Li K, Li J, Juhasz AL, Ma LQ (2014) Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability. Environ Sci Technol 48:8548–8555

    CAS  Article  Google Scholar 

  49. Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, Hoboken

    Google Scholar 

  50. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Article  Google Scholar 

  51. Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    CAS  Article  Google Scholar 

  52. Owers CJ, Rogers K, Woodroffe CD (2018) Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar Coast Shelf Sci 204:164–176

    Article  Google Scholar 

  53. Oyuela Leguizamo MA, Fernández Gómez WD, Gutíerrez Sarmiento MC (2017) Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - a review. Chemosphere 168:1230–1247

    CAS  Article  Google Scholar 

  54. Pacini N, Hesslerová P, Pokorný J, Mwinami T, Morrison EHJ, Cook AA, Zhang S, Harper DM (2018) Papyrus as an ecohydrological tool for restoring ecosystem services in afro-tropical wetlands. Ecohydrol Hydrobiol 18:142–154

    Article  Google Scholar 

  55. Quan WM, Han JD, Shen AL, Ping XY, Qian PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64:21–37

    CAS  Article  Google Scholar 

  56. Ragsdale SW (1998) Nickel biochemistry. Curr Opin Chem Biol 2:208–215

    CAS  Article  Google Scholar 

  57. Rezk MR, Al-Edany TY (1981) Ecology of Phragmites australis (Cav.) Trin. ex Steud. in Shat Al-Arab, Iraq. II. Reed growth as affected by the chemical composition of its beds. Pol Arch Hydrobiol 28:19–31

    Google Scholar 

  58. Rowe DR, Abdel-Magid IM (1995) Handbook of wastewater reclamation and reuse. CRC Press, Boca Raton, FL

    Google Scholar 

  59. Ruiz M, Velasco J (2010) Nutrient bioaccumulation in Phragmites australis: Management tool for reduction of pollution in the Mar Menor. Water Air Soil Pollut 205:173–185

    CAS  Article  Google Scholar 

  60. Sellal A, Belattar R, Bouzidi A (2019) Trace elements removal ability and antioxidant activity of Phragmites australis (from Algeria). Int J Phytoremediat 21:456–460

    CAS  Article  Google Scholar 

  61. Shaltout KH, Khalil MT (2005) Lake burullus (burullus protected area). Egyptian Environmental Affairs Agency (EEAA), Cairo

    Google Scholar 

  62. Singh N, Ma LQ (2007) Assessing plants for phytoremediation of arsenic-contaminated soils. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press Inc., Totowa, NJ, pp 319–347

    Google Scholar 

  63. SPSS (2012) SPSS base 21.0 user’s guide. SPSS Inc, Chicago

    Google Scholar 

  64. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    CAS  Article  Google Scholar 

  65. Ullah A, Heng S, Munis MF, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Article  Google Scholar 

  66. Vemic M, Rousseau D, Du Laıng G, Lens P (2014) Distribution and fate of metals in the Montenegrin part of Lake Skadar. Int J Sed Res 29:357–367

    Article  Google Scholar 

  67. Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    CAS  Article  Google Scholar 

  68. Yurtsever M, Şengil IA (2009) Biosorption of Pb (II) ions by modified quebracho tannin resin. J Hazard Mater 163:58–64

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at King Khalid University under Grant number (R.G.P. 2/56/40).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ebrahem M. Eid.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eid, E.M., Shaltout, K.H., Al-Sodany, Y.M. et al. Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. Bull Environ Contam Toxicol (2021). https://doi.org/10.1007/s00128-021-03120-y

Download citation

Keywords

  • Common reed
  • Heavy metals
  • Lakes
  • Nile Delta
  • Phytoremediation
  • Sediment and water pollution