Application of the RUSLE for Determining Riverine Heavy Metal Flux in the Upper Pearl River Basin, China

Abstract

A novel model was developed to estimate heavy metal flux at regional scale by using the Revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion. This model was then used to estimate the fluxes of heavy metals including Zn, Cu, Cr, Ni, Cd, and As in three mono-lithologic regions in upper Pearl River Basin including carbonate rock (CR) basin, black shale (BS) basin, and basalt (BT) basin. Results show that the total annual erosions of the watershed were 8.56 × 105 t a −1, 3.26 × 106 t a−1, and 5.09 × 105 t a−1 in CR, BT, and BS basins, respectively. The heavy metal flux was lowest for Cd (0.87 kg km−2 a−1, 0.46 kg km−2 a−1, and 1.07 kg km−2 a−1 in CR, BS, and BT basins, respectively). The heavy metal flux was highest for Zn in CR basin (16.29 kg km−2 a−1), Cr in BS basin (27.25 kg km−2 a−1) and Cu in BT basin (259.59 kg km−2 a−1). These findings have important implication to understand transport and distribution of heavy metals in the Pearl River Basin, and make regulations for controlling of non-point source heavy metal pollution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdullah EJ (2013) Quality assessment for Shatt Al-Arab River using heavy metal pollution index and metal index. J Environ Earth Sci 3:114–120

    Google Scholar 

  2. Almagro A, Thome TC, Colman CB et al (2019) Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int Soil Water Conserv Res 7:325–334. https://doi.org/10.1016/j.iswcr.2019.08.005

    Article  Google Scholar 

  3. Begueria S, Serrano NR, Tomas BM (2018) Computation of rainfall erosivity from daily precipitation amounts. Sci Total Environ 637:359–373. https://doi.org/10.1016/j.scitotenv.2018.04.400

    CAS  Article  Google Scholar 

  4. Benavide R, Jackson B, Maxwell D et al (2018) A review of the Revised Universal Soil Loss Equation (RUSLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci 22:6059–6086. https://doi.org/10.5194/hess-22-6059-2018

    Article  Google Scholar 

  5. Cadwalader GO, Renshaw CE, Jackson BP et al (2011) Erosion and physical transport via overland flow of arsenic and lead bound to silt-sized particles. Geomorphology 128:85–91. https://doi.org/10.1016/j.geomorph.2010.12.025

    Article  Google Scholar 

  6. Chakravarty M, Patgiri AD (2009) Metal pollution assessment in sediments of the Dikrong River, NE India. J Hum Ecol 27:63–67. https://doi.org/10.1080/09709274.2009.11906193

    Article  Google Scholar 

  7. Chen X, Yang X, Xiao L (2014) Study of soil erosion in the southern hillside area of China based on the RUSLE model. Resour Sci 36:1288–1297

    Google Scholar 

  8. Chen H, Teng Y, Lu S et al (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    CAS  Article  Google Scholar 

  9. Colla NS, Negrin VL, Marcovecchio JE et al (2015) Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuar Coast Shelf Sci 166:45–55. https://doi.org/10.1016/j.ecss.2015.05.009

    CAS  Article  Google Scholar 

  10. Duan Y, Yang Z, Yu T et al (2020) Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi. Environ Pollut 260:113905. https://doi.org/10.1016/j.envpol.2019.113905

    CAS  Article  Google Scholar 

  11. Fu S, Liu B (2002) Evolution of the soil erosion model. Adv Earth Sci 17:78–84. https://doi.org/10.3321/j.issn:1001-8166.2002.01.012

    Article  Google Scholar 

  12. He T, Dong L, Liu Y et al (2006) Change of physical-chemical properties and heavy mental element in soil from different parent material/rock. J Soil Water Conserv 20:157–162

    CAS  Google Scholar 

  13. He T, Dong L, Li G et al (2008) Differences of heavy metal contents in soils derived from different parent materials/rocks in Karst mountain area. J Agro-Environ Sci 27:188–193

    CAS  Google Scholar 

  14. Horowitz AJ, Stephens VC, Elrick KA et al (2012) Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data. Hydrol Process 26:1090–1114. https://doi.org/10.1002/hyp.8437

    CAS  Article  Google Scholar 

  15. Huang J, Hong H, Zhang L et al (2004) Study on predicting soil erosion in Jiulong River watershed based on GIS and USLE. J Soil Water Conserv 5:75–79. https://doi.org/10.3321/j.issn:1009-2242.2004.05.019

    Article  Google Scholar 

  16. Jia Z, Wang J, Zhou X et al (2020) Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ Pollut 256:113505. https://doi.org/10.1016/j.envpol.2019.113505

    CAS  Article  Google Scholar 

  17. Kerr JG, Cooke CA (2017) Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta. Sci Total Environ 596–597:427–436. https://doi.org/10.1016/j.scitotenv.2017.04.037

    CAS  Article  Google Scholar 

  18. Knijff JMVD, Jones RJA (2000) Soil erosion assessment in Europe[C]//ACM Conference on Electronic Commerce. 2000.

  19. Kong J, Guo Q, Wei R et al (2018) Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Sci Total Environ 637:1035–1045. https://doi.org/10.1016/j.scitotenv.2018.05.034

    CAS  Article  Google Scholar 

  20. Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113:894–899. https://doi.org/10.1289/ehp.7688

    CAS  Article  Google Scholar 

  21. Lavergren U, Astrom ME, Falk H et al (2009) Metal dispersion in groundwater in an area with natural and processed black shale—nationwide perspective and comparison with acid sulfate soils. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2008.11.022

    Article  Google Scholar 

  22. Li L, Wang B (2008) Geochemical characteristics of As and Cd in soils of Yunnan Province. Geophys Geochem Explor 32:497–501

    CAS  Google Scholar 

  23. Liebens J (2001) Heavy metal contamination of sediments in stormwater management systems: the effect of land use, particle size, and age. Environ Geol 41:341–351. https://doi.org/10.1007/s002540100392

    CAS  Article  Google Scholar 

  24. Liu B, Nearing MA, Risse LM (2000) Slope gradient effects on soil loss for steep slopes. SSSA J 64:1759–1763. https://doi.org/10.2136/sssaj2000.6451759x

    CAS  Article  Google Scholar 

  25. Liu Y (2017) Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J Geochem Explor 176:42–49. https://doi.org/10.3321/j.issn:0253-2468.2009.12.022

    CAS  Article  Google Scholar 

  26. Ma Y, Qin Y, Zheng B et al (2015) Seasonal variation of enrichment, accumulation and sources of heavy metals in suspended particulate matter and surface sediments in the Daliao river and Daliao river estuary, Northeast China. Environ Earth Sci 73:5107–5117. https://doi.org/10.1007/s12665-015-4325-7

    CAS  Article  Google Scholar 

  27. Macklin MG, Brewer PA, Hudson KA et al (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447. https://doi.org/10.1016/j.geomorph.2006.06.024

    Article  Google Scholar 

  28. N"Guessan YM, Probst JL, Bur T et al (2009) Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from? Sci Total Environ 407:2939–2952. https://doi.org/10.1016/j.scitotenv.2008.12.047

    CAS  Article  Google Scholar 

  29. Phinzi K, Ngetar NS (2018) The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: a review. Int Soil Water Conserv Res. https://doi.org/10.1016/j.iswcr.2018.12.002

    Article  Google Scholar 

  30. Polizzotto ML, Kocar BD, Benner SG et al (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454:505–U5. https://doi.org/10.1038/nature07093

    CAS  Article  Google Scholar 

  31. Pretty JN, Brett C, Gee D et al (2000) An assessment of the total external costs of UK agriculture. Agric Syst 65:113–136. https://doi.org/10.1016/S0308-521X(00)00031-7

    Article  Google Scholar 

  32. Qian J, Jiang W, Niu Y (2010) Geochemistry of heavy metal pollution in the mine-river system. Bull Mineral Petrol Geochem 29:74–82. https://doi.org/10.3969/j.issn.1007-2802.2010.01.012

    Article  Google Scholar 

  33. Quinton JN, Rickson RJ (1993) The role of soil erosion in the movement of contaminants. In: Schulin R, Desaules R, Webster R, von Steiger B (eds) Soil monitoring. Birkhauser Verlag, Basel, pp 141–156. https://doi.org/10.1007/978-3-0348-7542-4_12

    Google Scholar 

  34. Renard KG, Foster GR, Weesies GA et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural handbook

  35. Sharma A (2010) Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geo Spatial Infor Sci 13: 201-209. https://doi.org/10.1080/10643389.2019.1629800

    Article  Google Scholar 

  36. Shen C, Jin Y, Zhuang J et al (2020) Role and importance of surface heterogeneities in transport of particles in saturated porous media. Crit Rev Environ Sci Technol 50:244–329. https://doi.org/10.1080/10643389.2019.1629800

    Article  Google Scholar 

  37. Shi L, Xu X, Zhao X et al (2014) Characteristics of the atmospheric pollution and health risk of arsenic and heavy metals (Cu, Pb, Cr, Ni, Hg) in PM2.5 during heating period in Xining, China. Adv Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.955-959.993

    Article  Google Scholar 

  38. Singh UK, Kumar M, Chauhan R et al (2008) Assessment of the impact of landfill on groundwater quality: a case study of the Pirana site in western India. Environ Monit Assess 141:309–321. https://doi.org/10.1007/s10661-007-9897-6

    CAS  Article  Google Scholar 

  39. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627. https://doi.org/10.1007/s002540050473

    CAS  Article  Google Scholar 

  40. Tang X, Wang Q, Tao W (2018) Empirical formula for estimating nitrate nitrogen loss with surface runoff based on RUSLE Model. J Soil Water Conserv 32:19–26. https://doi.org/10.13870/j.cnki.stbcxb.2018.02.003

    Article  Google Scholar 

  41. Tang X, Peng B, Yu C et al (2009) Elemental geochemistry of soils derived from the Lower-Cambrian black shales in Anhua county, central Hunan(China). Acta Sci Circum 29:2623–2634

    CAS  Google Scholar 

  42. Tchounwou PB, Yedjou CG, Patlolla AK et al (2012) Heavy metals toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  43. Tian Y, Huang Y, Zhang Q et al (2019) Soil erosion and selenium loss in Qinjiang River basin in Beibu Gulf coastal zone China. Environ Sci 39:257–273. https://doi.org/10.19674/j.cnki.issn1000-6923.2019.0032

    Article  Google Scholar 

  44. Ujevic I, Odzak N, Baric A (2000) Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial wastewaters. Water Res 34:3055–3061. https://doi.org/10.1016/s0043-1354(99)00376-0

    CAS  Article  Google Scholar 

  45. Wen Y, Li W, Yang Z et al (2020) Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ Pollut 258:113645. https://doi.org/10.1016/j.envpol.2019.113645

    CAS  Article  Google Scholar 

  46. Williams JR, Arnold JG (1997) A system of erosion-sediment yield models. Soil Technol 11:43–55. https://doi.org/10.1016/S0933-3630(96)00114-6

    Article  Google Scholar 

  47. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning [USA]. The United States. Department of Agriculture. Agriculture handbook (USA).

  48. Wu G, Cui L, He J et al (2013) Comparison of MODIS-based models for retrieving suspended particulate matter concentrations in Poyang Lake, China. Int J Appl Earth Obs Geoinf 24:63–72. https://doi.org/10.1016/j.jag.2013.03.001

    Article  Google Scholar 

  49. Wu Q, Han G, Li F et al (2015) Chractristic and soursce analysis of major ions in Nanpanjiang and Beipanjiang at the upper Pearl River during the wet season. Environ Chem 34:1289–1296

    CAS  Google Scholar 

  50. Xiong Y, Ning Z, Liu Y et al (2017) Distribution and pollution evaluation of heavy metals in sediments in the Nanpan River Basin (Yunnan Section). Earth Environ 45:171–178. https://doi.org/10.14050/j.cnki.1672-9250.2017.02.008

    Article  Google Scholar 

  51. Xu Y, Huang J, Feng Y (2010) Soil erosion economic loss under different land use structures: a case study of Maotion River Watershed, Guizhou Province. Prog Geogr 29:1451–1456. https://doi.org/10.11820/dlkxjz.2010.11.045

    Article  Google Scholar 

  52. Yang Y, Liu P, Wu G (2006) Heavy metal accumulation from zinc smelters in a carbonate rock region in Hezhang County, Guizhou Province, China. Water Air Soil Pollut 174:321–339. https://doi.org/10.1007/s11270-006-9121-2

    CAS  Article  Google Scholar 

  53. Yu C, Lavergren U, Peltola P et al (2014) Retention and transport of arsenic, uranium and nickel in a black shale setting revealed by a long-term humidity cell test and sequential chemical extractions. Chem Geol 363:134–144. https://doi.org/10.1016/j.chemgeo.2013.11.003

    CAS  Article  Google Scholar 

  54. Zhang Y, Han H, Wu X (2014) Determination and health risk assessment of heavy metals on the source of underground water in Yulin City. Appl Mech Mater 587–589:776–779. https://doi.org/10.4028/www.scientific.net/amm.587-589.776

    Article  Google Scholar 

  55. Zhao M, Li D, Zhang G, Cheng X (2016) Evaluation of soil erosion and soil nutrient loss in Anhui Province based on RUSLE model. Acta Pedol Sin 53:28–38. https://doi.org/10.11766/trxb201503240666

    Article  Google Scholar 

  56. Zhao W, Song Y, Guan D et al (2018) Pollution status and bioavailability of heavy metals in soils of a typical black shale area. J Agro-Environ Sci 37:1332–1341. https://doi.org/10.11654/jaes.2018-0595

    Article  Google Scholar 

  57. Zhu L, He S, Li J (2010) Weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical region. Acta Geol Sin English Edition 82:982–993

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D program of China (No. 2017YFD0800301).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chongyang Shen or Yongfeng Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Shen, C., Wang, S. et al. Application of the RUSLE for Determining Riverine Heavy Metal Flux in the Upper Pearl River Basin, China. Bull Environ Contam Toxicol 106, 24–32 (2021). https://doi.org/10.1007/s00128-020-02896-9

Download citation

Keywords

  • RUSLE
  • Soil erosion
  • Heavy metal flux
  • Lithology
  • Pearl river basin