Occurrence and Fluxes of Polycyclic Aromatic Hydrocarbons in the Third Largest Fresh Water Lake (Lake Taihu) in China

Abstract

Polycyclic aromatic hydrocarbons (PAHs) pose great risks to lake ecosystem and human health. Comprehensive knowledge on PAHs in lakes is critical for their risk control. 118 samples were collected from different environmental medium to study the occurrence and fluxes of 16 PAH in Lake Taihu. The average ∑PAH16 in air, water, phytoplankton, zooplankton, suspended particle matter, and surface sediments were 122 ng m−3, 61.3 ng L−1, 6500 ng g−1, 4940 ng g−1, 27,900 ng g−1, and 522 ng g−1, respectively. Sediments were contaminated by PAHs from pyrogenic sources. The average fluxes of air–water, dry deposition, and sinking of the 16 individual PAHs were 2900, 300, and 251 ng m−2 d−1. In the air–water column-surface sediments system, air–water exchange was the main transport pathway. In order to ensure safety of drinking water resources for local residence, the governments are suggested to work together to reduce PAHs emission and implement new energy policy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bidleman TF, McConnell LL (1995) A review of field experiments to determine air–water gas exchange of persistent organic pollutants. Sci Total Environ 159:101–117

    CAS  Article  Google Scholar 

  2. Cardoso FD, Dauner ALL, Martins CC (2016) A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary. Environ Pollut 214:219–229

    CAS  Article  Google Scholar 

  3. Catallo WJ, Schlenker M, Gambrell RP, Shane BS (1995) Toxic chemicals and trace metals from urban and rural Louisiana Lakes: recent historical profiles and toxicological significance. Environ Sci Technol 29:1436–1445

    CAS  Article  Google Scholar 

  4. Dachs J, Eisenreich SJ, Hoff RM (2000) Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ Sci Technol 34:1095–1102

    CAS  Article  Google Scholar 

  5. Du J, Jing C (2018) Anthropogenic PAHs in lake sediments: a literature review (2002–2018). Environ Sci-Process Impacts 20:1649–1666

    CAS  Article  Google Scholar 

  6. Guo G, Wu F, He H, Zhang R, Feng C, Li H, Chang M (2012) Characterizing ecological risk for polycyclic aromatic hydrocarbons in water from Lake Taihu, China. Environ Monit Assess 184:6815–6825

    CAS  Article  Google Scholar 

  7. Huang L, Batterman SA (2014) Multimedia model for polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in Lake Michigan. Environ Sci Technol 48:13817–13825

    CAS  Article  Google Scholar 

  8. Kannan K, Johnson-Restrepo B, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environ Sci Technol 39:4700–4706

    CAS  Article  Google Scholar 

  9. Kuo Y-M, Lin T-C, Tsai P-J, Lee W-J, Lin H-Y (2003) Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere 51:313–319

    CAS  Article  Google Scholar 

  10. Li Y et al (2019) Determination of influencing factors on historical concentration variations of PAHs in West Taihu Lake, China. Environ Pollut 249:573–580

    CAS  Article  Google Scholar 

  11. Lin T, Hu LM, Guo ZG, Zhang G, Yang ZS (2013) Deposition fluxes and fate of polycyclic aromatic hydrocarbons in the Yangtze River estuarine-inner shelf in the East China Sea. Global Biogeochem Cycles 27:77–87

    CAS  Article  Google Scholar 

  12. Liu Y et al (2017) Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci Total Environ 584:307–317

    Article  Google Scholar 

  13. McDonough CA, Khairy MA, Muir DCG, Lohmann R (2014) Significance of population centers as sources of gaseous and dissolved PAHs in the Lower Great Lakes. Environ Sci Technol 48:7789–7797

    CAS  Article  Google Scholar 

  14. Morales L et al (2015) Oceanic sink and biogeochemical controls on the accumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in plankton. Environ Sci Technol 49:13853–13861

    CAS  Article  Google Scholar 

  15. Nizzetto L et al (2012) Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton. Environ Sci Technol 46:3204–3211

    CAS  Article  Google Scholar 

  16. Okere UV (2012) Biodegradation of PAHs in Pristine soils from different climatic regions. J Bioremed Biodegrad S1:6

    Google Scholar 

  17. Olivella MÀ (2006) Polycyclic aromatic hydrocarbons in rainwater and surface waters of Lake Maggiore, a subalpine lake in Northern Italy. Chemosphere 63:116–131

    CAS  Article  Google Scholar 

  18. Qin B et al (2013a) Lake eutrophication and its ecosystem response. Chin Sci Bull 58:961–970

    CAS  Article  Google Scholar 

  19. Qin N et al (2013b) Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu). Chemosphere 93:1685–1693

    CAS  Article  Google Scholar 

  20. Qiu X, Zhu T, Wang F, Hu J (2008) Air-water gas exchange of organochlorine pesticides in Taihu Lake, China. Environ Sci Technol 42:1928–1932

    CAS  Article  Google Scholar 

  21. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    CAS  Article  Google Scholar 

  22. Shen H et al (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    Article  Google Scholar 

  23. Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    CAS  Article  Google Scholar 

  24. Tao Y, Liu D (2019) Trophic status affects the distribution of polycyclic aromatic hydrocarbons in the water columns, surface sediments, and plankton of twenty Chinese lakes. Environ Pollut 252:666–674

    CAS  Article  Google Scholar 

  25. Tao Y, Yu J, Lei G, Xue B, Zhang F, Yao S (2017) Indirect influence of eutrophication on air–water exchange fluxes, sinking fluxes, and occurrence of polycyclic aromatic hydrocarbons. Water Res 122:512–525

    CAS  Article  Google Scholar 

  26. Vardar N, Tasdemir Y, Odabasi M, Noll KE (2004) Characterization of atmospheric concentrations and partitioning of PAHs in the Chicago atmosphere. Sci Total Environ 327:163–174

    CAS  Article  Google Scholar 

  27. Wang QG, Gu G, Higano Y (2006) Toward integrated environmental management for challenges in water environmental protection of Lake Taihu Basin in China. Environ Manage 37:579–588

    Article  Google Scholar 

  28. Wang Y-W, Zhao J, Li J-H, Li S-S, Zhang L-H, Wu M (2011) Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Curr Microbiol 62:679–683

    CAS  Article  Google Scholar 

  29. Wang X, Sun M, Xie M, Liu M, Luo L, Li P, Kong F (2013) Differences in microcystin production and genotype composition among Microcystis colonies of different sizes in Lake Taihu. Water Res 47:5659–5669

    CAS  Article  Google Scholar 

  30. Wang D et al (2018) Ecological and health risk assessment of PAHs, OCPs, and PCBs in Taihu Lake basin. Ecol Indic 92:171–180

    CAS  Article  Google Scholar 

  31. Wu X, Kong F (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94:258–266

    Article  Google Scholar 

  32. Xu X et al (2016) Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Sci Total Environ 554:7–16

    Article  Google Scholar 

  33. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    CAS  Article  Google Scholar 

  34. Zeng Q, Jeppesen E, Gu X, Mao Z, Chen H (2018) Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture-and shipping-impacted subtropical lake, China. Chemosphere 201:612–620

    CAS  Article  Google Scholar 

  35. Zhang Y, Lu Y, Xu J, Yu T, Zhao W (2011) Spatial distribution of polycyclic aromatic hydrocarbons from Lake Taihu, China. Bull Environ Contam Toxicol 87:80–85

    CAS  Article  Google Scholar 

  36. Zhang Y, Guo C-S, Xu J, Tian Y-Z, Shi G-L, Feng Y-C (2012) Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res 46:3065–3073

    CAS  Article  Google Scholar 

  37. Zhang W, Gao Y, Yi N, Wang C, Di P, Yan S (2017) Variations in abundance and community composition of denitrifying bacteria during a cyanobacterial bloom in a eutrophic shallow lake in China. J Freshw Ecol 32:467–476

    CAS  Article  Google Scholar 

  38. Zhao ZH, Zhang L, Deng JM, Wu JL (2015) The potential effects of phytoplankton on the occurrence of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in water from Lake Taihu, China. Environ Sci-Process Impacts 17:1150–1156

    CAS  Article  Google Scholar 

  39. Zhao Z, Jiang Y, Li Q, Cai Y, Yin H, Zhang L, Zhang J (2017) Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotox Environ Safe 142:117–128

    CAS  Article  Google Scholar 

  40. Zhi H, Zhao Z, Zhang L (2015) The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China. Chemosphere 119:1134–1140

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Natural Science Foundation of China (Grant No. 41977330), Natural Science Foundation of Jiangsu Province (Grant No. BK20170049), The Fundamental Research Funds for the Central Universities (B200201046), and National Basic Technological Research of China (Grant No. 2015FY110900).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Tao, Y. Occurrence and Fluxes of Polycyclic Aromatic Hydrocarbons in the Third Largest Fresh Water Lake (Lake Taihu) in China. Bull Environ Contam Toxicol 106, 190–197 (2021). https://doi.org/10.1007/s00128-020-02847-4

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons
  • Occurrence
  • Air–water exchange flux
  • Sinking flux
  • Lake Taihu