Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus

Abstract

Marine organisms are often exposed to a mixture of various pollutants in marine environment (i.e., nanoparticles, organic pollutants). The present study investigated the potential effects of multi-walled carbon nanotubes (MWCNTs) on the toxicity of triphenyltin chloride (TPTCl). The results revealed an antagonistic interaction between MWCNTs and TPTCl on the copepod through 96 h acute exposure, which was attributed to the adsorption of TPTCl to MWCNTs and aggregation of MWCNTs in the test solutions. Results of 21 days’ chronic exposure showed that the effect concentration of MWCNTs could be 100 times lower than that of acute exposure. The exposure to binary mixture of MWCNT (1.0 mg/L) and TPTCl (0.3 µg/L) caused a reduction by 94% for the 3rd time spawning and 83% for the total number of hatched nauplii. The ingestion and exterior attachment of MWCNTs to the copepod might be the main reasons causing the adverse effect in reproduction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55. https://doi.org/10.1016/j.watres.2014.09.032

    Article  CAS  Google Scholar 

  2. Arndt DA, Moua M, Chen J, Klaper RD (2013) Core structure and surface functionalization of carbon nanomaterials alter impacts to daphnids mortality, reproduction, and growth: acute assays do not predict chronic exposure impacts. Envir Sci Technol 47:9444–9452. https://doi.org/10.1021/es4030595

    Article  CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792. https://doi.org/10.1126/science.1060928

    Article  CAS  Google Scholar 

  4. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat Toxicol 86:379–387. https://doi.org/10.1016/j.aquatox.2007.11.019

    Article  CAS  Google Scholar 

  5. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679. https://doi.org/10.1016/j.cbpa.2005.10.006

    Article  CAS  Google Scholar 

  6. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  7. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC-Trend Anal Chem 30:517–527. https://doi.org/10.1016/j.trac.2010.11.014

    Article  CAS  Google Scholar 

  8. Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E (2018) The influence of arsenic on the toxicity of carbon nanoparticles in bivalves. J Hazard Mater 358:484–493. https://doi.org/10.1016/j.jhazmat.2018.05.056

    Article  CAS  Google Scholar 

  9. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – an overview. Environ Sci Pollut R 20:2828–2843. https://doi.org/10.1007/s11356-013-1524-1

    Article  CAS  Google Scholar 

  10. Kim KT, Klaine SJ, Lin S, Ke PC, Kim SD (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ Toxicol Chem 29:122–126. https://doi.org/10.1002/etc.8

    Article  CAS  Google Scholar 

  11. Kwok KWH, Leung KMY, Flahaut E, Cheng J, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5:951–961. https://doi.org/10.2217/NNM.10.59

    Article  CAS  Google Scholar 

  12. Lee JW, Won E-J, Kang H-M, Hwang D-S, Kim D-H, Kim R-K, Lee S-J, Lee J-S (2016) Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). Aquat Toxicol 171:9–19. https://doi.org/10.1016/j.aquatox.2015.12.005

    Article  CAS  Google Scholar 

  13. Liu J, Wang W-X (2015) Reduced cadmium accumulation and toxicity in Daphnia Magna under carbon nanotube exposure. Environ Toxicol Chem 34:2824–2832. https://doi.org/10.1002/etc.3122

    Article  CAS  Google Scholar 

  14. Metzelder F, Funck M, Schmidt TC (2018) Sorption of heterocyclic organic compounds to multiwalled carbon nanotubes. Environ Sci Tech 52:628–637. https://doi.org/10.1021/acs.est.7b05205

    Article  CAS  Google Scholar 

  15. Pyrzynska K (2008) Carbon nanotubes as a new solid-phase extraction material for removal and enrichment of organic pollutants in water. Sep Purif Rev 37:374–391. https://doi.org/10.1080/15422110802178843

    Article  CAS  Google Scholar 

  16. Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173. https://doi.org/10.1016/j.aquatox.2007.04.005

    Article  CAS  Google Scholar 

  17. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410. https://doi.org/10.1016/j.cej.2010.08.045

    Article  CAS  Google Scholar 

  18. Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Tech 47:7012–7019. https://doi.org/10.1021/es304016u

    Article  CAS  Google Scholar 

  19. Tao X, He Y, Fortner JD, Chen Y, Hughes JB (2013) Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): enhanced toxicity and accumulation of copper in Daphnia magna. Chemosphere 92:1245–1252. https://doi.org/10.1016/j.chemosphere.2013.04.056

    Article  CAS  Google Scholar 

  20. Yan Z, Liu Y, Sun H, Lu G (2018) Influence of multiwall carbon nanotubes on the toxicity of 17ß-estradiol in the early life stages of zebrafish. Environ Sci Pollut R 25:7566–7574. https://doi.org/10.1007/s11356-017-1063-2

    Article  CAS  Google Scholar 

  21. Yi AX, Leung KMY, Lam MHW, Lee J-S, Giesy JP (2012) Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. Chemosphere 89:1015–1025. https://doi.org/10.1016/j.chemosphere.2012.05.080

    Article  CAS  Google Scholar 

  22. Yi AX, Han J, Lee J-S, Leung KMY (2014) Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects. Ecotoxicology 23:1314–1325. https://doi.org/10.1007/s10646-014-1274-y

    Article  CAS  Google Scholar 

  23. Yi X, Zhang K, Han G, Yu M, Chi T, Jing S, Li Z, Zhan J, Wu M (2018) Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus. Environ Pollut 243:687–692. https://doi.org/10.1016/j.envpol.2018.09.038

    Article  CAS  Google Scholar 

  24. Zhang C, Chen X, Tan L, Wang J (2018) Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ Sci Pollut R 25:13127–13133. https://doi.org/10.1007/s11356-018-1580-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 41606131, 21205058), the open foundation of Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration (Grant No. 201812), and Dalian University of Technology via the Fundamental Research Funds for the Central Universities (DUT17LK45).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minghuo Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Yu, M., Li, Z. et al. Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus. Bull Environ Contam Toxicol 102, 789–794 (2019). https://doi.org/10.1007/s00128-019-02608-y

Download citation

Keywords

  • Nanoparticles
  • Chronic exposure
  • Antagonistic
  • Reproduction