Skip to main content
Log in

Heavy Metal Bioaccumulation in the Anemone Paraphelliactis pabista Dunn, 1982 (Actiniaria: Hormathiidae) from the Hydrothermal System of Guaymas Basin, Gulf of California

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A single specimen of the anemone Paraphelliactis pabista was recovered from the Southern Trough of Guaymas Basin during the deep-sea expedition Extreme 2008 conducted onboard the R/V Atlantis/DSRV-2 ALVIN. We studied the bioaccumulation capacity of heavy metals in various tissues of the anemone (oral disk–columella–pedal disk), and retention or adhesion of mineral particles in the epidermis, mesoglea, and gastrodermis. The digested tissues were analyzed for As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Sb, Sr, Ti, V, and Zn by inductively coupled plasma mass spectrometry. This analysis revealed the capacity of P. pabista for accumulating heavy metals. The predominant mineral particles identified in tissue samples was barite followed by Fe, aluminum-silicates, Sr, and with less presence Cr, Ti, and pyrite. Of the three body compartments analyzed of this anemone, the oral and pedal disks show a greater capacity of bioaccumulation of heavy metals than the columella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J (1993) Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental partial pressure of carbon dioxide. Nature 362:147–149

    Article  CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond, JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the galapagos rift. Science 203(4385):1073–1083. https://doi.org/10.1126/science.203.4385.1073

    Article  CAS  Google Scholar 

  • Demina LL, Galkin SV, Shumilin EN (2009) Bioaccumulation of some trace elements in the biota of hydrothermal fields of the Guaymas Basin (Gulf of California). Bol Soc Geol Mex 61(1):31–45. https://doi.org/10.18268/BSGM2009v61n1a4

    Article  Google Scholar 

  • Desbruyères D, Chevaldonné P, Alayse AM, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin PM, Cosson R, Caprais JC, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the ‘Pompeii worm’ (Alvinella pompejana Desbruyeres and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res Pt II 45:383–422. https://doi.org/10.1016/S0967-0645(97)00083-0

    Article  Google Scholar 

  • Di Carlo M, Giovannelli D, Fattorini D, Le Bris N, Vetriani C, Regoli F (2017) Trace elements and arsenic speciation in tissues of tube dwelling polychaetes from hydrothermal vent ecosystems (East Pacific Rise): an ecological role as antipredatory strategy? Mar Environ Res 132:1–13

    Article  CAS  Google Scholar 

  • Eisler R (1981) Trace metal concentrations in marine organisms. Pergamon Press, New York, p 687

    Google Scholar 

  • Eisler R (2010) Compendium of trace metals and marine biota volume 1: plants and invertebrates. Elsevier Science, Burlington, p 638

    Google Scholar 

  • Fautin DG (2016) Catalog to families, genera, and species of orders Actiniaria and Corallimorpharia (Cnidaria: Anthozoa). Zootaxa 4145(1):001–449

    Article  Google Scholar 

  • Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213(4505):336–338

    Article  CAS  Google Scholar 

  • Gray SJ, Elliott M (2009) Ecology of marine sediments. From science to management 2ª edition. Oxford University Press, Oxford

    Google Scholar 

  • Kádár E (2007) Postcapture depuration of essential metals in the deep sea hydrothermal mussel Bathymodiolus azoricus. Bull Environ Contam Toxicol 78:99–106. https://doi.org/10.1007/s00128-007-9001-5

    Article  CAS  Google Scholar 

  • Kádár E, Costa V, Martins I, Santos RS, Powell JJ (2005) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiologia 548:191–205. https://doi.org/10.1007/s10750-005-4758-1

    Article  CAS  Google Scholar 

  • López-González PJ, Rodríguez E, Gili JM (2003) New records on sea anemones (Anthozoa: Actiniaria) from hydrothermal vents and cold seeps. Zoologische Mededelingen 345:215–243

    Google Scholar 

  • Pazos R, Astorga E, Hernández. M (2007) Digestión ácida asistida por microondas de tejidos orgánicos (Met USEPA SW-3052 modificado). Unidad de Análisis Ambiental. Facultad de Ciencias, UNAM. Procedimiento estandarizado. Clave; Met 006

  • Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171(1):274–290. https://doi.org/10.2307/1541923

    Article  CAS  Google Scholar 

  • Ruelas IJ, Soto LA, Paez OF (2003) Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas Basin, Gulf of California. Deep-Sea Res PT I 50:757–761. https://doi.org/10.1016/S0967-0637(03)00054-2

    Article  CAS  Google Scholar 

  • Sanamyan NP, Sanamyan KE (2007) Deep-water actiniaria from East Pacific hydrothermal vents and cold seeps. Invertebr Zool 4(1):83–102

    Article  Google Scholar 

  • Shmelev IP, Kuznetsov AA, Galkin SV (2009) Heavy metals in the benthic animals from hydrothermal vents: results of neutron activation analysis. Oceanology 49:429–431. https://doi.org/10.1134/S0001437009030151

    Article  Google Scholar 

  • Soto LA (2003) Research of Extreme Environments in the Deep- Sea. In: “Agustín Ayala Castañares: universitario, impulsor de la investigación científica (Ed. Luis A. Soto). Inst. de Cien. del Mar y Limnol. Univ. Nal. Autón, Mex., 311–318

  • Soto LA (2009) Stable carbon and nitrogen isotopic signatures of fauna associated to the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep-Sea Res PT II 56(19–20):1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013

    Article  CAS  Google Scholar 

  • Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow water hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39. https://doi.org/10.1016/j.chemgeo.2005.07.02

    Article  CAS  Google Scholar 

  • TunnicliffeV (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407

    Google Scholar 

  • Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9 to 10° N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res 105:11203–11222

    Article  Google Scholar 

  • Von Damm KL, Edmond JM, Measures CI, Grant B (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49(11):2221–2237. https://doi.org/10.1016/0016-7037(85)90223-6

    Article  Google Scholar 

  • Walker CH, Sibly RM, Hopkin SP, Peakall DB (2006) Principles of ecotoxicology. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Woods Hole Oceanographic Institute for their invitation to participate in the oceanographic cruise AT 15-38 on board of the R/V ATLANTIS. A special word of appreciation to the crew of the ship and the DSRV ALVIN for their invaluable support during the oceanographic cruise.

Funding

Funding was provided by ICMYL-UNAM with Grant No. 6044

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Chicho, M., Soto, L.A., Vanegas-Pérez, C. et al. Heavy Metal Bioaccumulation in the Anemone Paraphelliactis pabista Dunn, 1982 (Actiniaria: Hormathiidae) from the Hydrothermal System of Guaymas Basin, Gulf of California. Bull Environ Contam Toxicol 102, 486–491 (2019). https://doi.org/10.1007/s00128-019-02588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02588-z

Keywords

Navigation