Evaluation of Growth, Photosynthetic Pigments and Genotoxicity in the Wetland Macrophyte Bidens laevis Exposed to Tebuconazole

Abstract

The fungicide tebuconazole (TBZ) has been used to prevent terrestrial fungi in agroecosystems, but it can also induce negative effects to non-targeted aquatic organisms, such as plants. The aim of the present work was to evaluate the potential cyto- and genotoxicity of TBZ in the aquatic macrophyte Bidens laevis, exposed to a range of concentrations of 0.1–100 µg/L. Mitosis in root tips were analyzed showing decreased mitotic index and an increase of chromosomal aberrations at 10 and 100 µg/L. The regression of TBZ concentration vs. aneugenic aberrations was significant, indicating the mechanism of genotoxicity. The specific growth rate (Gr) for total length decreased in plants exposed to 0.1, 10 and 100 µg/L. Gr for root decreased in plants exposed at 0.1 and 10 µg/L, reaching a maximum percent inhibition root growth rate (Ir) of 68.8%. These results show that TBZ resulted cyto- and genotoxic to B. laevis at environmentally relevant levels.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Battalin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT (2011) Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water Air Soil Pollut 218:307–322

    Article  CAS  Google Scholar 

  2. Bernardes PM, Andrade-Vieira LF, Aragão FB, Ferreira A, da Silva Ferreira MF (2015) Toxicity of Difenoconazole and Tebuconazole in Allium cepa. Water Air Soil Poll 226:207

    Article  CAS  Google Scholar 

  3. Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB (2017) Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. Aquat Toxicol 193:144–151

    Article  CAS  Google Scholar 

  4. De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431

    Article  CAS  Google Scholar 

  5. FAO (2018) Retrieved January 17, 2019 from http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation94/tebucona.pdf

  6. Fisun K, Goc Rasgele P (2009) Genotoxic effects of Raxil on root tips and anthers of Allium cepa L. Caryologia 62:1–9

    Article  Google Scholar 

  7. Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (1992) Biomarkers and biochemical and physiological markers of anthropogenic stress. Lewis Publishers, Chelsea, 347 pp

    Google Scholar 

  8. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  Google Scholar 

  9. Lv T, Zhang Y, Casas ME, Carvalho PN, Arias CA, Bester K, Brix H (2016) Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere 148:459–466

    Article  CAS  Google Scholar 

  10. Maltby L, Arnold D, Arts G, Davies J, Heimbach F, Pickl C, Poulsen V (2010) Aquatic macrophyte risk assessment for pesticides. CRC Press, Boca Raton, pp 135

    Google Scholar 

  11. Menone ML, Pérez DJ, Lukaszewicz G, Camadro EL (2015) Identificación de hidrófitas de la Argentina para estudios de genotoxicidad de contaminantes acuáticos. J Basic Appl Genet 26:9–17

    Google Scholar 

  12. Pérez DJ, Lukaszewicz G, Menone ML, Camadro EL (2011) Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity. Environ Poll 159:281–286

    Article  CAS  Google Scholar 

  13. Pérez DJ, Menone ML, Doucette WJ (2013) Root-to-shoot transfer and distribution of endosulfan in the wetland macrophyte Bidens laevis L. Environ Toxicol Chem 32:2478–2481

    Google Scholar 

  14. Pérez DJ, Lukaszewicz G, Menone ML, Amé MV, Camadro EL (2014) Genetic and biochemical biomarkers in the macrophyte Bidens laevis L. exposed to a commercial formulation of endosulfan. Environ Toxicol 29:1063–1071

    Article  CAS  Google Scholar 

  15. Pérez DJ, Menone ML, Tognetti J, Lukaszewicz G (2018) Azoxystrobin induces chromosomal aberrations in roots of the hydrophyte Bidens laevis L. Revista Internacional de Contaminación Ambiental (RICA). ISSN 0188–4999 In press

  16. Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment- effect of sampling frequency. Environ Poll 158:737–748

    Article  CAS  Google Scholar 

  17. Serra A-A, Couée I, Renault D, Gouesbet G, Sulmon C (2015) Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J Exp Bot 66:1801–1816

    Article  CAS  Google Scholar 

  18. Tomlin CDS (2003) The e-Pesticide Manual: a world compendium. Tebuconazole 13th edn. PC CD-ROM, Version 3.0, 2003-04. British Crop Protection Council: Surrey

  19. Yang D, Wang N, Yan X, Shi J, Zhang M, Wang Z, Yuan H (2014) Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids Surf B 60:241–246

    Article  CAS  Google Scholar 

  20. Zubrod JP, Bundschuh M, Feckler A, Englert D, Schulz R (2011) Ecotoxicological impact of the fungicide tebuconazole on an aquatic decomposer-detritivore system. Environ Toxicol Chem 30:2718–2724

    Article  CAS  Google Scholar 

  21. Zubrod JP, Englert D, Feckler A, Koksharova N, Konschak M, Bundschuh R, Schnetzer N, Englert K, Schulz R, Bundschuh M (2015) Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning? Environ Sci Technol 49:1173–1181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to G. Lukaszewicz for his help on identifying chromosomal aberrations in the samples and to G. Iturburu for his help in the statistical treatment of the data. This work was supported by FONCYT- AGENCIA (PICT-2013- 1348) and UNMDP (EXA 795/16 and EXA 900/18).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mirta L. Menone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreyra, L.D., Garanzini, D.S., Medici, S. et al. Evaluation of Growth, Photosynthetic Pigments and Genotoxicity in the Wetland Macrophyte Bidens laevis Exposed to Tebuconazole. Bull Environ Contam Toxicol 102, 353–357 (2019). https://doi.org/10.1007/s00128-019-02539-8

Download citation

Keywords

  • Fungicides
  • Plant growth
  • Cytotoxicity
  • Chromosomal aberrations