Advertisement

Histological and Genotoxic Biomarkers in Prochilodus lacustris (Pisces, Prochilodontidae) for Environmental Assessment in a Protected Area in the Northeast of Brazil

  • Rayssa de Lima CardosoEmail author
  • Raimunda Nonata Fortes Carvalho-Neta
  • Antonio Carlos Leal de Castro
  • Cássia Fernanda Chagas Ferreira
  • Marcelo Henrique Lopes Silva
  • James Werllen de Jesus Azevedo
  • João Reis Salgado Costa Sobrinho
  • Débora Martins Silva Santos
Article

Abstract

The quality of aquatic environments all around the world is being altered by different human activities that represent direct threat to the ecological system and the aquatic biota. This study aimed to evaluate the occurrence of histological and genotoxic alterations in Prochilodus lacustris as indicators of anthropic impacts in a lacustrine environment in northeast Brazil. The histological alterations were evaluated using the histological alteration index, and the genotoxic alterations were detected using the micronuclei test, at three sampling stations (S1, S2 and S3). The gills presented lesions with three stages of severity, with mild lesions more frequent in the specimens collected at station S1. Mild hepatic tissue lesions were the most frequent type in both areas. Micronucleus analysis showed that station S3 was the most affected. The biological responses observed indicated that the fish are under influence of environmental changes. It is important to highlight that the organisms collected at station S3 had a more compromised health status.

Keywords

Liver Gill Histopathology Micronuclei Biomarkers 

Notes

Acknowledgements

The authors are grateful to the Biology and Aquatic Environment Study Group (BIOAqua/UEMA), the Animal Morphology Laboratory, the Aquatic Organism Biomarker Laboratory (LABOAQ/UEMA), the Fishing and Aquatic Ecology Laboratory (LABPEA/UEMA), the Soil Chemistry Laboratory (UEMA), the UEMA (Veterinary Medicine Department) Food and Water Microbiology Laboratory and the Oceanography Department of the Universidade Federal do Maranhão (DEOLI/UFMA) for assistance with the laboratory analyses.

References

  1. Adams SM (2002) Biological indicators of stress in fish. Trans Am Fish Soc 12:190–199Google Scholar
  2. Adams SM, Crumby WD, Greeley MS, Shugart LR, Sylor CF (1992) Responses of fish populations and communities to pulp mill effluents: a holistic assessment. Ecotox Environ Safe 24:347–360CrossRefGoogle Scholar
  3. Bernet D, Schmidt H, Wahli T, Burkhardt-Holm P (2004) Evaluation of two monitoring approaches to assess effects of waste water disposal on histological alterations in fish. Hydrobiology 524:53–66CrossRefGoogle Scholar
  4. Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26:205–213CrossRefGoogle Scholar
  5. Brazil (2005) Resolução Conama n°357/005. Classificação de águas, doces, salobras e salinas do Território Nacional. Publicado no Diário Oficial da União. http://www.mma.gov.br/port/conama/res/res05/res35705. Acessado em 20 de fevereiro de 2016
  6. Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol 5(3):327–336CrossRefGoogle Scholar
  7. Camargo AFM, Valentini WC (1990) Características físicas e químicas da água. In: Castagnolli N, Pinto MLG (eds) Piscicultura, 1° ed. Jaboticabal, São Paulo, pp 8–13Google Scholar
  8. Campana MA, Panzeri AM, Moreno VJ, Dulout FN (1999) Genotoxic evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in erythrocytes of the fish Cheirodon interruptus interruptus. Mutat Res-Genet Tox 438(2):155–161CrossRefGoogle Scholar
  9. Carrasco KR, Tilbury KL, MYERS MS (1990) An assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47(11):2123–2136CrossRefGoogle Scholar
  10. Carvalho-Neta RNF, Castro ACL (2008) Diversidade das assembleias de peixes estuarinos na Ilha dos Caranguejos, Maranhão. Arq Cien Mar 41:48–57Google Scholar
  11. Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res 655:41–46CrossRefGoogle Scholar
  12. Chang C, Sibley TH (1993) Accumulation and transfer of copper by Oocystis pusilla. B Environ Contam Tox 50:689–695CrossRefGoogle Scholar
  13. Costa PM, Diniz MS, Caeiro S, Lobo J, Martin M, Ferreira AM, Caetano M, Vale C, Delvalls TA, Costa MH (2009) Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol 92(3):202–212.  https://doi.org/10.1016/j.aquatox.2008.12.009 CrossRefGoogle Scholar
  14. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(14):81–95CrossRefGoogle Scholar
  15. Fernandes MN, Mazon EAF (2003) Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publishers, 1ª ed. Canadá, pp 203–231Google Scholar
  16. Geiszinger A, Bonnineau C, Faggiano L, Guasch H, López-Doval JC, Proia L, Ricart M, Ricciardi F, Romani A, Rotter S, Muñoz I, Schmitt-Jansen M, Sabater S (2009) The relevance of the community approach linking chemical and biological analyses in pollution assessment. Trends Analyt Chem 28(5):619–626.  https://doi.org/10.1016/j.trac.2009.02.012 CrossRefGoogle Scholar
  17. Gernhofer M, Pawert M, Schramm M, Muller E, Triebskorn R (2001) Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst 8:241–260Google Scholar
  18. He X, Nie X, Wang Z, Cheng Z, Li K, Li G, Hung Wong M, Liang X, Tsui MT (2011) Assessment of typical pollutants in waterborne by combining active biomonitoring and integrated biomarkers response. Chemosphere 84(10):1422–1431.  https://doi.org/10.1016/j.chemosphere.2011.04.054 CrossRefGoogle Scholar
  19. Hinton DE, Lauren DJ, Holliday TL, Giam CS (1990) Liver structural alterations accompanying chronic toxicity in fishes: potentioal biomarkers of exposure. In: Mcarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Crc Press, Boca Raton, pp 51–65Google Scholar
  20. Ip CC, Li XD, Zhang G, Wong CSC, Zhang WL (2005) Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China. Environ Pollut 138:494–504CrossRefGoogle Scholar
  21. Jabeen G (2011) Studies on fish species specific metals bioaccumulation patterns in relation to water, sediments, plankton and fish in the river Ravi, Pakistan. PhD Thesis, University of Agriculture Faisalabad (UAF) PakistanGoogle Scholar
  22. Leonardi M, Tarifeno E, Vera J (2009) Diseases of the Chilean flounder, Paralichthys adspersus (Steindachner, 1867), as a biomarker of marine coastal pollution near the Itata River (Chile): Part II. Histopathological lesions. Arch Environ Contam Toxicol 56(3):546–556.  https://doi.org/10.1007/s00244-008-9223-5 CrossRefGoogle Scholar
  23. Liu N, Wang L, Yan B, Li Y, Ye F, Li J, Wang Q (2014) Assessment of antioxidant defense system responses in the hepatopancreas of the freshwater crab Sinopotamon henanense exposed to lead. Hydrobiologi 741:3–12.  https://doi.org/10.1007/s10750-014-1806-8 CrossRefGoogle Scholar
  24. Luna LG (1968) Manual of the histologic staining methods of the armed forces institute of pathology. McGraw Hill, New YorkGoogle Scholar
  25. Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648CrossRefGoogle Scholar
  26. Matsumoto FE, Cólus IMS (2000) Micronucleus frequencies in Astyanax bimaculatus (Characidae) treated with cyclophosphamide or vinblastine sulfate. Genet Mol Biol 23(2):489–492CrossRefGoogle Scholar
  27. Matthews GVT (1993) The Ramsar Convention on Wetlands: Its History and Development. Ramsar Convention Bureau, Switzerland, Suiça, Gland SwitzerlandGoogle Scholar
  28. Mert R, Alas A, Bulut S, Özcan MM (2014) Determination of heavy metal contents in some freshwater Fishes. Environ Monit Assess 186:8017–8022CrossRefGoogle Scholar
  29. Minissi S, Ciccotti E, Rizzoni M (1996) Micronucleus test in erythrocytes of Barbus plebejus (Teleostei,Pisces) from two natural environments: a bioassay for the in situ detection of mutagens in fresh water. Mutat Res 367:245–251CrossRefGoogle Scholar
  30. Mondon JA, Duda S, Nowak BF (2001) Histological, growth and 7-ethoxyresorufin Odeethylase (EROD) activity responses of greenback flounder Rhombosolea tapirina to contaminated marine sediment and diet. Aquatic Biol 54(3–4):231–247.  https://doi.org/10.1016/S0166-445X(01)00146-1 CrossRefGoogle Scholar
  31. Nepomuceno JC, Ferrari I, Spanó MA, Centeno AJ (1997) Detection of Micronuclei in Peripheral Erythocytes of Cyprinus carpio Exposed to Metallic Mercury. Environ Mol Mutat 30:293–297CrossRefGoogle Scholar
  32. Nrc, National Research Council (1987) Biological markers in environmental health research - Committee on Biological Markers of the National Research Council. Environ Health Persp 1:74Google Scholar
  33. Pacheco AO, Hackel C (2002) Instabilidade cromossômica induzida por agroquímicos em trabalhadores rurais na região de Passo Fundo, Rio Grande do Sul. Cad Saude Publica 18(6):1675–1683CrossRefGoogle Scholar
  34. Pacheco M, Santos MA (2002) Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotox Environ Saf 53:331–347CrossRefGoogle Scholar
  35. Palhares D, Grisolia CK (2002) Comparison between the micronucleus frequencies of kidney and gill erythrocytes in tilapia fish, following mitomicin C treatment. Genet Mol Biol 25(3):281–284CrossRefGoogle Scholar
  36. Peakall DW (1994) Biomarkers: the way forward in environmental assessment. Toxicol Ecotox News 1:55–60Google Scholar
  37. Pereira P, De Pablo H, Vale C, Pacheco M (2010) Combined use of environmental data and biomarkers in fish (Liza aurata) inhabiting a eutrophic and metal-contaminated coastal system—gills reflect environmental contamination. Mar Environ Res 69(2):53–62CrossRefGoogle Scholar
  38. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and Chronic effects of Pollutants on Freshwater Fish. Cambridge, 1ª ed, pp 339–352Google Scholar
  39. Porto JIR, Araujo CSO, Feldberg E (2005) Mutagenic effects of mercury pollution as revealed by micronucleus test on three Amazonian fish species. Environ Res 97:287–292CrossRefGoogle Scholar
  40. Rabello-Gay MN (1991) Teste de micronúcleo em medula óssea. In: Rabello-Gay MN, Rodríguez MALR, Monteleone-Neto R (eds) Mutagênese, carcinogênese e teratogênese: métodos e critérios de avaliação. Ribeirão Preto, 1ª ed, pp 83–90Google Scholar
  41. Rabitto IS, Alves Costa JRM, Assis HCS, Pelletier É, Akaishi FM, Anjos A, Randi MAF, Ribeiro CAO (2005) Effects of dietary Pb (II) and tributyltin on neotropial fish, Hoplias malabaricus: histopatological and biochemical findings. Ecotox Environ Saf 60:147–156CrossRefGoogle Scholar
  42. Righetto AM, Gomes KM, Freitas FRS (2017) Poluição difusa nas águas pluviais de uma bacia de drenagem urbana. Eng Sanit Ambient 22(6):1109–1120.  https://doi.org/10.1590/S1413-41522017162357 CrossRefGoogle Scholar
  43. Rodrigues EL, Fanta E (1998) Liver histopathology of the fish Brachydanio rerio after acute exposure to sublethal levels of the organophosphate Dimetoato 500. Rev Bras Zool 15:441–450CrossRefGoogle Scholar
  44. Rotter S, Sans-Piché F, Streck G, Altenburger R, Schmitt-Jansen M (2011) Active bio-monitoring of contamination in aquatic systems: an in situ translocation experiment applying the PICT concept. ‎Aquat Toxicol 101:228–236.  https://doi.org/10.1016/j.aquatox.2010.10.001 CrossRefGoogle Scholar
  45. Santana MS, Yamamoto FY, Sandrini-Neto L, Filipak Neto F, Ortolani CF, Ribeiro CAO, Prodocimo MM (2018) Diffuse sources of contamination in freshwater fish: detecting effects through active biomonitoring and multi-biomarker approaches. Ecotoxicol Environ Saf 149:173–181.  https://doi.org/10.1016/j.ecoenv.2017.11.036 2018.CrossRefGoogle Scholar
  46. Santos CA, Lenz GD, Brandão ARP, Chippari-Gomes LC (2013) Acute toxicity of the water-soluble fraction of diesel in Prochilodus vimboides Kner (Characiformes: Prochilodontidae). Neotrop Ichthyol 11:193–198CrossRefGoogle Scholar
  47. Seriani R, Ranzani-Paiva MJT, Silva-Souza ÂT, Napoleão SR (2011) Hematology, micronuclei and nuclear abnormalities in fishes from São Francisco river, Minas Gerais state, Brazil. Acta Sci Biol Sci 33:107CrossRefGoogle Scholar
  48. Stentiford GD, Longshaw M, Lyons BP, Jones G, Green M, Feist SW (2003) Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Mar Environ Res 55(2):137–159CrossRefGoogle Scholar
  49. Tavares-Dias M, Moraes FR (2003) Características Hematológicas de Tilapia rendalli Boulenger, 1896 (Osteichthyes: Cichlidae) capturada em “pesque-pague” de Franca, São Paulo, Brasil. Biosci J 19:107–114Google Scholar
  50. Temprano J, Arango O, Cagiao J, Suárez J, Tejero I (2005) Stormwater quality calibration by SWMM; A case study in Northern Spain. http://www.wrc.org.za. Acessado em: 10 de novembro de 2016
  51. Tyler G (1991) AA or ICP – Which do you choose? icp instruments at work. varian, optical spectroscopy instruments. Australia, 1ª ed, pp 1–6Google Scholar
  52. Van Dyk JC, Cochran EMJ, Wagenaar GM (2012) Liver histopathology of the sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution. Chemosphere 87:301–311.  https://doi.org/10.1016/j.chemosphere.2011.12.002 CrossRefGoogle Scholar
  53. Van Der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Phar 13:57–149CrossRefGoogle Scholar
  54. Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: Teoria e prática. São Paulo, BrasilGoogle Scholar
  55. Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San DiegoGoogle Scholar
  56. Yasser AG, Naser MD (2011) Impact of pollutants on fish collected from different parts of Shatt Al-Arab River: a histopathological study. Environ Monit Assess 181 (1–4): 175 – 82.  https://doi.org/10.1007/s10661-010-1822-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rayssa de Lima Cardoso
    • 1
    Email author
  • Raimunda Nonata Fortes Carvalho-Neta
    • 2
  • Antonio Carlos Leal de Castro
    • 3
  • Cássia Fernanda Chagas Ferreira
    • 2
  • Marcelo Henrique Lopes Silva
    • 4
  • James Werllen de Jesus Azevedo
    • 3
  • João Reis Salgado Costa Sobrinho
    • 5
  • Débora Martins Silva Santos
    • 2
  1. 1.Institute of Science and TechnologySão Paulo State University (Unesp)São PauloBrazil
  2. 2.Department of Chemistry and Biology, Postgraduate Program in Aquatic Resources and FisheriesState University of Maranhão (Uema)São LuísBrazil
  3. 3.Department of Oceanography and LimnologyFederal University of Maranhão (Ufma)São LuísBrazil
  4. 4.Postgraduate Program in Biodority and Biotechnology Network of the Legal Amazon (BIONORTE), Department of BiologyFederal University of Maranhão (Ufma)São LuísBrazil
  5. 5.Department of Agricultural Engineering, Soil Chemistry LaboratoryState University of Maranhão (Uema)São LuísBrazil

Personalised recommendations