Effects of Wind Mixing in a Stratified Water Column on Toxic Cyanobacteria and Microcystin-LR Distribution in a Subtropical Reservoir

  • Mauricio González-PianaEmail author
  • Andrea Piccardo
  • Carolina Ferrer
  • Beatriz Brena
  • Macarena Pírez
  • Daniel Fabián
  • Guillermo Chalar


We analyzed the effects of stratification changes due to wind on the vertical cyanobacteria distribution and microcystin-LR concentrations in a reservoir and assessed the implications for water management. Under stratified conditions, the highest microcystin concentrations (up to 4.16 µg/L) and toxic cyanobacteria biovolume occurred in the epilimnion (~ 1 m). The lowest microcystin concentrations were between 0.02 and 1.28 µg/L and occurred in the hypolimnion (~ 20 m). A cold front passage associated with high wind velocities induced water column mixing, promoting the redistribution of microcystin-LR and cyanobacteria throughout the water column and increasing their concentrations in deeper zones. Microcystin-LR concentration was positively correlated with cyanobacteria biovolume (r = 0.747) and chlorophyll a concentration (r = 0.798). Changes in thermal profile due to wind would imply a greater challenge for drinking water treatment plants, since high cyanobacterial and microcystin concentrations could reach deep-water intakes.


Stratification Microcystin Cyanobacteria Reservoir Bonete 



We are grateful to the staff of the Administración Nacional de Usinas y Trasmisiones Eléctricas (UTE), Washington Larregui, Jaime da Silva, and Magdalena Mandiá for their logistical support. This research was partially funded by UTE.


  1. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, EUAGoogle Scholar
  2. Armengol J, Dolz J (2004) Presentation II international congress of civil engineering, territory and environment, Santiago de Compostela. pp 875–889Google Scholar
  3. Bonilla S, Haakonsson S, Somma A, Gravier A et al (2015) Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. INNOTEC 10:9–22Google Scholar
  4. Bramburger AJ, Reavie ED (2016) A comparison of phytoplankton communities of the deep chlorophyll layers and epilimnia of the Laurentian Great Lakes. J Great Lakes Res. CrossRefGoogle Scholar
  5. Chalar G (2009) The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39:200–208CrossRefGoogle Scholar
  6. Chalar G, Gerhard M, González-Piana M, Fabián D (2014) Hidroquímica y eutrofización en tres embalses subtropicales en cadena. In: Marcovecchio JE, Botté SE, Freije RH (eds) Procesos geoquímicos superficiales en Sudamérica. Nueva Graficesa, Salamanca, pp 121–148Google Scholar
  7. Chen J, Zhang DW, Xie P, Wang Q et al (2009) Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci Total Environ 407:3317–3322CrossRefGoogle Scholar
  8. Diehl S, Berger S, Ptacnik R, Wild A (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83:399–411CrossRefGoogle Scholar
  9. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12CrossRefGoogle Scholar
  10. Falconer I (2005) Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. CRS press, Boca RatonGoogle Scholar
  11. Falconer I, Bartram J, Chorus I, Kuiper-Goodman T et al (1999) Safe levels and safe practice. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. E & FN Spon, London, pp 161–182Google Scholar
  12. Fee EJ (1976) Vertical seasonal distribution of chlorophyll in lakes of experimental lakes area, northwestern Ontario: implications for primary production estimates. Limnol Oceanogr 21:767–783CrossRefGoogle Scholar
  13. Freemeteo (2018) Accessed 3 July 2018
  14. González-Piana M, Fabian D, Delbene L, Chalar G (2011) Toxics blooms of Microcystis aeruginosa in three Rio Negro reservoirs, Uruguay. Harmful Algae News 43:16–17Google Scholar
  15. González-Piana M, Fabian D, Piccardo A, Chalar G (2017) Dynamics of total microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. Bull Environ Contam Toxicol 99:488–492CrossRefGoogle Scholar
  16. Grabowska M, Mazur-Marzec H (2014) Vertical distribution of cyanobacteria biomass and cyanotoxin production in the polymictic Siemianówka Dam Reservoir (eastern Poland). Arch Pol Fish 22:41–51CrossRefGoogle Scholar
  17. Ha K, Kim HW, Jeong KS, Joo GJ (2000) Vertical distribution of Microcystis population in the regulated Nakdong River, Korea. Limnology 1:225–230CrossRefGoogle Scholar
  18. Halstvedt CB, Rohlack T, Andersent T, Skulberg O et al (2007) Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J Plankton Res 29:471–482CrossRefGoogle Scholar
  19. Harris G, Griffiths F (1987) On means and variances in aquatic food chains and recruitment to the fisheries. Freshw Biol 17:381–386CrossRefGoogle Scholar
  20. Hillebrand H, Dürselen C, Kirschtel D, Pollingher U et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  21. Huisman J, van Oostveen P, Weissing FJ (1999) Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44:1781–1787CrossRefGoogle Scholar
  22. Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007CrossRefGoogle Scholar
  23. Kotak B, Lam A et al (1995) Variability of the hepatotoxin microcystin LR in hypereutrophic drinking water lakes. J Phycol 31:248–263CrossRefGoogle Scholar
  24. Kristensen P, Søndergaard M, Jeppesen E (1992) Resuspensión in a shallow eutrophic lake. Hydrobiol 228:101–109CrossRefGoogle Scholar
  25. Kruk C, Segura A, Nogueira L, Carballo C et al (2015) Herramientas para el monitoreo y sistema de alerta de floraciones de cianobacterias nocivas: Río Uruguay y Río de la Plata. INNOTEC 10:23–39Google Scholar
  26. Lamper W, Sommer U (2007) Limnoecology, 2nd edn. Oxford press Inc., New YorkGoogle Scholar
  27. Mellard J, Yoshiyama K, Litchman E, Klausmeier C (2011) The vertical distribution of phytoplankton in stratified water columns. J Theor Biol 269:16–30CrossRefGoogle Scholar
  28. Nasri H, El Herry S, Bouaicha N (2008) First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol Environ Saf 71:535–544CrossRefGoogle Scholar
  29. Nishiwaki-Matsushima R, Ohtake T, Nishiwaki S, Suakanuma M et al (1992) Liver cancer promotion by the cyanobacterial cyclic peptide toxin mycrocistin LR. J Cancer Res Clin Oncol 118:420–424CrossRefGoogle Scholar
  30. Oliver R, Ganf G (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Dordrecht, pp 149–194Google Scholar
  31. Pirez M, González-Sapienza G, Sienra D, Ferrari G et al (2013) Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: Simple and affordable methods may be the answer. J Environ Manag 114: 63–71CrossRefGoogle Scholar
  32. Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, New YorkGoogle Scholar
  33. Reynolds CS, Oliver R, Walsby A (1987) Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. N Z J Mar Fresh 21:379–390CrossRefGoogle Scholar
  34. Reynolds CS, Huszar V, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428CrossRefGoogle Scholar
  35. Scofield A, Watkins J, Weidel B, Luckey F et al (2017) The deep chlorophyll layer in Lake Ontario: extent, mechanisms of formation, and abiotic predictors. J Great Lakes Res. CrossRefGoogle Scholar
  36. Sivonen K, Jones G (1999) Cyanobacterial toxin. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. E & FN Spon, London, pp 54–124Google Scholar
  37. Tundisi JG, Matsumura-Tundisi T, Arantes Junior JD, Tundisi J et al (2004) The response of Carlos Botelho (Lobo, Broa) reservoir to the passage of cold fronts as reflected by physical, chemical, and biological variables. Braz J Biol 64:177–186CrossRefGoogle Scholar
  38. Tundisi JG, Sebastián NY, Matsumura-Tundisi T et al (2006) The responses of reservoir of southeastern Brazil to the passage of cold fronts as reflected by physical, chemical and biological variables. Verh Int Verein Limnol 29:2124–2128Google Scholar
  39. Tundisi JG, Matsumura-Tundisi T, Pereira KC et al (2010) Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems. Braz J Biol 70:815–824CrossRefGoogle Scholar
  40. Utermöhl H (1958) Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  41. Webster IT (1990) Effect of wind on the distribution of phytoplankton cells in lakes. Limnol Oceanogr 35:989–1001CrossRefGoogle Scholar
  42. Webster IT, Hutchinson PA (1994) Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnol Oceanogr 39:365–373CrossRefGoogle Scholar
  43. Weithoff G, Lorke A, Walz N (2000) Effects of watercolumn mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake. Oecologia 125:91–100CrossRefGoogle Scholar
  44. White B, Matsumoto K (2012) Causal mechanisms of the deep chlorophyll maximum in Lake Superior: a numerical modeling investigation. J Great Lakes Res 38:504–513CrossRefGoogle Scholar
  45. Wu S, Wang S, Yang H, Xie P et al (2008) Field studies on the environmental factors in controlling microcystins production in the subtropical shallow lakes of the Yangtze river. Bull Environ Contam Toxicol 80:329–334CrossRefGoogle Scholar
  46. Wuest A, Piepke G, Van Senden DC (2000) Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters. Limnol Oceanogr 45:1388–1400CrossRefGoogle Scholar
  47. Yang Y, Colom W, Pierson D, Pettersson K (2016) Water column stability and summer phytoplankton dynamics in a temperate lake (Lake Erken, Sweden). Inland Waters 6:499–508CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mauricio González-Piana
    • 1
    Email author
  • Andrea Piccardo
    • 1
  • Carolina Ferrer
    • 1
  • Beatriz Brena
    • 2
  • Macarena Pírez
    • 2
  • Daniel Fabián
    • 1
  • Guillermo Chalar
    • 1
  1. 1.Limnology Section, Institute of Ecology and Environmental Sciences, Faculty of SciencesUniversity of the RepublicMontevideoUruguay
  2. 2.Bioscience Department, Faculty of ChemistryUniversity of the RepublicMontevideoUruguay

Personalised recommendations