Skip to main content

Advertisement

Log in

Soil Mercury Accumulation and Emissions in a Bamboo Forest in a Compact Fluorescent Lamp Manufacturing Area

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The role of bamboo forest in soil Hg accumulation and emissions was evaluated by analyzing Hg concentration in soil and plant samples as well as Hg flux between soil and air. THg concentrations in soil samples ranged widely from 28.5 to 860 ng g−1 with a mean value of 153 ± 17.3 ng g−1. Methylmercury concentrations in soil samples from forest soil (FS, 0.94 ± 0.20 ng g−1) were significantly higher (p < 0.05) than from bare soil (BS, 0.54 ± 0.07 ng g−1). The mean foliar THg concentration (178 ± 16.8 ng g−1) was significantly higher (p < 0.05) than those in branches (63.1 ± 7.27 ng g−1) and roots (73.1 ± 16.9 ng g−1), indicating that the major source of Hg in bamboo might be from air deposition. Hg flux from FS (25.6 ng m−2 h−1) was significantly lower (p < 0.05) than that from BS (32.2 ng m−2 h−1). The annual decline in Hg emissions due to the presence of the bamboo forest may reach 6.94 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bash JO, Miller DR (2009) Growing season total gaseous mercury (TGM) flux measurements over an Acer rubrum L. stand. Atmos Environ 43:5953–5961

    Article  CAS  Google Scholar 

  • Bloom N, Fitzgerald WF (1988) Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Anal Chim Acta 208:151–161

    Article  CAS  Google Scholar 

  • FAO (The Food and Agriculture Organization) (2010) Global Forest Resources Assessment 2010. Food and Agricultural Organization of the United Nations

  • Ferrara R, Mazzolai B (1998) A dynamic flux chamber to measure mercury emission from aquatic systems. Sci Total Environ 215:51–57

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fu X, Feng XB, Zhu W, Rothenberg S, Yao H, Zhang H (2010) Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environ Pollut 158:2324–2333

    Article  CAS  Google Scholar 

  • Gillis A, Miller DR (2000) Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber. Sci Total Environ 260:181–189

    Article  CAS  Google Scholar 

  • Gustin MS, Taylor GE, Maxey RA (1997) Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. J Geophys Res Atmos 102:3891–3898

    Article  CAS  Google Scholar 

  • Jung R, Ahn YS (2017) Distribution of mercury concentrations in tree rings and surface soils adjacent to a phosphate fertilizer plant in Southern Korea. Bull Environ Contam Toxicol 99:253–257

    Article  CAS  Google Scholar 

  • Klapstein SJ, O’Driscoll NJ (2018) Methylmercury biogeochemistry in freshwater ecosystems: a review focusing on DOM and photodemethylation. Bull Environ Contam Toxiocol 100:14–25

    Article  CAS  Google Scholar 

  • Laacouri A, Nater EA, Kolka RK (2013) Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA. Environ Sci Technol 47:10462–10470

    Article  CAS  Google Scholar 

  • Li P, Zhou G, Du H, Lu D, Mo L, Xu X, Shi Y, Zhou Y (2015) Current and potential carbon stocks in Moso bamboo forests in China. J Environ Manage 156:89–96

    Article  CAS  Google Scholar 

  • Liang P, Feng XB, Zhang C, Zhang J, Cao YC, You QZ, Leung AOW, Wong MH, Wu SC (2015) Human exposure to mercury in a compact fluorescent lamp manufacturing area: by food (rice and fish) consumption and occupational exposure. Environ Pollut 198:126–132

    Article  CAS  Google Scholar 

  • Liang P, Feng XB, You QZ, Zhang J, Cao YC, Leung AOW, Wu SC (2016) Mercury speciation, distribution, and bioaccumulation in a river catchment impacted by compact fluorescent lamp manufactures. Environ Sci Pollut Res 23:10903–10910

    Article  CAS  Google Scholar 

  • Lindberg SE, Price JL (1999) Airborne emissions of mercury from municipal landfill operations: a short-term measurement study in Florida. J Air Waste Manage 49:520–532

    Article  CAS  Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng XB, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36:19–32

    Article  CAS  Google Scholar 

  • López-Blanco C, Collahuazo L, Torres S, Chinchay L, Ayala D, Benítez P (2015) Mercury pollution in soils from the Yacuambi River (Ecuadorian Amazon) as a result of gold placer mining. Bull Environ Contam Toxicol 95:311–316

    Article  CAS  Google Scholar 

  • Ma M, Wang DY, Sun RG, Huang LX (2013) Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmos Environ 64:116–123

    Article  CAS  Google Scholar 

  • Meng B, Feng XB, Qiu GL, Liang P, Li P, Chen CX, Shang LH (2011) The process of methylmercury accumulation in rice (Oryza sativa L.). Environ Sci Technol 45:2711–2717

    Article  CAS  Google Scholar 

  • Morton-Bermea O, Garza-Galindo R, Hernández-Álvarez E, Ordoñez-Godínez SL, Amador-Muñoz O, Beramendi-Orosco L, Miranda J, Rosas-Pérez I (2018) Atmospheric PM2.5 mercury in the metropolitan area of Mexico city. Bull Environ Contam Toxicol 100:588–592

    Article  CAS  Google Scholar 

  • Musilova J, Arvay J. Vollmannova A, Toth T, Tomas J (2016) Environmental contamination by heavy metals in region with previous mining activity. Bull Environ Contam Toxicol 97:569–575

    Article  CAS  Google Scholar 

  • Obrist D (2007) Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry 85:119–123

    Article  CAS  Google Scholar 

  • Pokharel AK, Obrist D (2011) Fate of mercury in tree litter during decomposition. Biogeosciences 8:2507–2521

    Article  CAS  Google Scholar 

  • SBZP (2011) Statistical Bureau of Zhejiang Province

  • Schlüter K (2000) Review: evaporation of mercury from soils. an integration and synthesis of current knowledge. Environ Geol 39:249–271

    Article  Google Scholar 

  • Siwik EIH, Campbell LM, Mierle G (2009) Fine-scale mercury trends in temperate deciduous tree leaves from Ontario, Canada. Sci Total Environ 407:6275–6279

    Article  CAS  Google Scholar 

  • Song Z, Liu H, Li B, Yang X (2013) The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Glob Change Biol 19:2907–2915

    Article  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Hall BD, Rolfhus KR, Scott KJ, Lindberg SE, Dong W (2001) Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environ Sci Technol 35:3089–3098

    Article  CAS  Google Scholar 

  • Stamenkovic J, Gustin MS (2009) Nonstomatal versus stomatal uptake of atmospheric mercury. Environ Sci Technol 43:1367–1372

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Env Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  • USEPA (2001) Method 1630: methylmercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. USEPA, Washington, DC, pp 1–41

    Google Scholar 

  • USEPA (2002) Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry (Method 1631, Revision E). USEPA, Washington, DC

    Google Scholar 

  • Wang D, He L, Shi X, Wei S, Feng X (2006) Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere 64:1845–1854

    Article  CAS  Google Scholar 

  • Xu J, Zhang M, Fan LZ (2007) Alleviation of occupational mercury hazards after technical modification in an energy-saving lamps plant. Occup Health Emerg Rescue 25:127–128 (in Chinese)

    Google Scholar 

  • Zhang H, Lindberg SE, Marsik FJ, Keeler GJ (2001) Mercury air/surface exchange kinetics of background soils of the Tahquamenon river watershed in the Michigan Upper Peninsula. Water Air Soil Pollut 126:151–169

    Article  CAS  Google Scholar 

  • Zhou G, Meng C, Jiang P, Xu Q (2011) Review of carbon fixation in bamboo forests in China. Bot Rev 77:262

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 21577130, 21677131), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC05B05-03) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, S., Zhang, J. et al. Soil Mercury Accumulation and Emissions in a Bamboo Forest in a Compact Fluorescent Lamp Manufacturing Area. Bull Environ Contam Toxicol 103, 16–22 (2019). https://doi.org/10.1007/s00128-018-2412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2412-7

Keywords

Navigation