Skip to main content

Advertisement

Log in

Contamination Level and Spatial Distribution of Heavy Metals in Water and Sediments of El Guájaro Reservoir, Colombia

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Heavy metals have become a subject of special concern worldwide, mainly due to high persistence in the environment, toxicity, biogeochemical recycling and ecological risk. Therefore, the objective of this investigation was to analyze the spatial–temporal distribution of heavy metals in water and sediments to determine the environmental status of El Guájaro Reservoir, where such studies have not been developed. Two measurement campaigns (dry and wet period) were carried out and eight sampling stations were selected. A comparison of water and sediment quality parameters with existing national and international regulations was done. Also, heavy metal distribution maps were generated, and the geoaccumulation index was calculated to identify sources and sediments contamination level. Based on the obtained results, agriculture and mining activities are the main causes of the reservoir contamination. This metals levels could be a potential risk for the aquatic life and the populations that are supplied from this water body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater. https://www.standardmethods.org. Accessed 15 Nov 2017

  • Buchman MF (2008) NOAA screening quick reference tables, NOAA OR and R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/9327. Accessed 10 May 2017

  • Burgos-Núñez S, Navarro-Frómeta A, Marrugo-Negrete J, Enamorado-Montes G, Urango-Cárdenas I (2017) Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: a marine tropical ecosystem. Mar Pollut Bull 120(1–2):379–386. https://doi.org/10.1016/j.marpolbul.2017.05.016

    Article  CAS  Google Scholar 

  • CCME (2014) Canadian environmental quality guidelines. http://ceqg-rcqe.ccme.ca/en/index.html#void. Accessed 30 May 2017

  • CRA—Corporación Autónoma Regional del Atlántico (2012) Actualización del Manual de Operaciones del Hidrosistema al cual pertenece el Embalse el Guájaro y llevar a cabo el diseño de las estructuras y sistemas para disminuir la vulnerabilidad de la zona ante eventos climatológicos extremos. Protocolo de operación de las compuertas del embalse el Guájaro. Convenio 003 de 2012, Colombia

  • CRA—Corporación Autónoma Regional del Atlántico (2014) Diagnóstico inicial para el ordenamiento del embalse El Guájaro y la Ciénaga de Luruaco, Barranquilla, Atlántico. http://www.crautonoma.gov.co/documentos/recursohidrico/6_Diagn%C3%B3stico%20Ordenamiento%20(Preliminar).pdf. Accessed 25 June 2017

  • Dhivert E, Grosbois C, Courtin Nomade A, Bourrain X, Desmet M (2016) Dynamics of metallic contaminants at a basin scale—spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Sci Total Environ 541:1504–1515. https://doi.org/10.1016/j.scitotenv.2015.09.146

    Article  CAS  Google Scholar 

  • Förstner U, Salomons W (1980) Trace metal analysis on polluted sediments. Environ Sci Technol Lett 1:494–505

    Article  Google Scholar 

  • Gao X, Chen C (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46(6):1901–1911. https://doi.org/10.1016/j.watres.2012.01.007

    Article  CAS  Google Scholar 

  • IDEAM—Instituto de Hidrología, Meteorología y Estudios Ambientales (2002) Guide for the monitoring of discharges, surface water and groundwater. Bogotá D.C. p 83. http://oab.ambientebogota.gov.co/es/con-la-comunidad//gui-a-para-el-monitoreo-de-vertimientos-aguas-superficiales-y-aguas-subterraneas. Accessed 9 Sep 2017

  • Mahecha-Pulido J, Trujillo-González J, Torres-Mora M (2015) Contenido de metales pesados en suelos agrícolas de la región Ariari. Departamento de Meta Orinoquia 19(1):108–122

    Google Scholar 

  • Mancera-Rodríguez N, Alvarez-León R (2006) Current state of knowledge of the concentration of mercury and other heavy metals in fresh water fish in Colombia. Acta Biol Colomb 11(1):3–23

    Google Scholar 

  • Mariani C, Pompêo M (2008) La calidad del sedimento: La contaminación por metales puede ser una amenaza para los seres vivos. Cienc Hoy 18(107):48–53

    Google Scholar 

  • Marrugo-Negrete J, Navarro-Frómeta A, Ruiz-Guzman J (2015) Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring. Rev MVZ Cordoba 20(3):4754–4765

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Pinedo-Hernández J, Díez S (2017) Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res 154:380–388. https://doi.org/10.1016/j.envres.2017.01.021

    Article  CAS  Google Scholar 

  • Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L (2017) Distribution of nitrogen fixing bacterial isolates and its relationship to the physicochemical characteristics of southern agricultural soils of the Atlántico department, Colombia. SE 36(2):174–181. https://doi.org/10.25252/SE/17/51202

    Article  Google Scholar 

  • Miniambiente -Ministerio de Medio Ambiente y Desarrollo Sostenible (2015) http://www.minambiente.gov.co/index.php/component/content/article/81-normativa/2093-plantilla-areas-planeacion-y-seguimiento-30#decreto-%C3%BAnico-hipervinculos. Accessed 5 Sep 2017

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine river. Geol J 2(3):108–118

    Google Scholar 

  • Papagiannis I, Kagalou J, Leonardos J, Petridis D, Kalfakakou V (2004) Copper and zinc in four freshwater fish species from lake Pamvotis (Greece). Environ Int. https://doi.org/10.1016/j.envint.2003.08.002

    Article  Google Scholar 

  • Ruiz E, Echenandía A, Romero F (1994) Relaciones entre agua y sedimento en río de origen torrencial. Limnética 10(1):101–107

    Google Scholar 

  • Saleem M, Iqbal J, Shah M (2015) Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in fresh water sediments—a case study from Mangla lake, Pakistan. ENMM. https://doi.org/10.1016/j.enmm.2015.02.002

    Article  Google Scholar 

  • Scherer U, Sagemann S, Stephan F (2011) Emission via erosion and retention of heavy metals in river basins of Germany. Geophys Res Lett 13:4769

    Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, (Drew) Bodaly RA, Paterson MJ, Beaty KG, Hesslein RH, Heyes A, Majewski AR (2004) The rise and fall of mercury methylation in an experimental reservoir. Environ Sci Technol 38(5):1348–1358

    Article  CAS  Google Scholar 

  • Torres-Bejarano F, Padilla-Coba J, Rodríguez-Cuevas C, Ramírez-León H, Cantero-Rodelo R (2016) La modelación hidrodinámica para la gestión hídrica del embalse del Guájaro, Colombia. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. https://doi.org/10.1016/j.rimni.2015.04.001

    Article  Google Scholar 

  • Uninorte - Universidad del Norte (2009) Embalse El Guájaro. Diagnóstico hidráulico y ambiental de las condiciones actuales. Gobernación del Atlántico. Secretaría de Agua Potable y Saneamiento Básico, Barranquilla. p 122

    Google Scholar 

  • US. EPA (2007a) SW-846 test method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. p 30

  • US. EPA (2007b) SW-846 test method 7471B: mercury in solid or semisolid waste (manual cold-vapor technique). p 11

  • Vallejo P, Vásquez L, Correa I, Bernal G, Alcántara J, Palacio J (2016) Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.06.093

    Article  Google Scholar 

  • Wang L, Chen J, Hung Y, Shammas N (2009) Heavy metals in the environment. CRC Press, Boca Raton

    Google Scholar 

  • Zhang L, Shi Z, Zhang J, Jiang Z, Wang F, Huang X (2016) Toxic heavy metals in sediments, seawater, and molluscs in the eastern and western coastal waters of Guangdong Province, South China. Environ Monit Assess. https://doi.org/10.1007/s10661-016-5314-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks to Tito Crissien, General Manager of Universidad de la Costa. His collaboration and support was invaluable for developing the research project INV.1106-01-001-11. Authors acknowledge and appreciate the participation of Karols Scaldaferro, Maria Franco, Mercedes Benitez, Laura Blanco, Ana Milena Ariza and Luz Daniela Sampayo for their continued support during the sampling campaigns to fulfill their bachelor thesis. And special thanks to the Laboratory of Toxicology and Environmental Management at the Universidad de Córdoba for the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin Torres-Bejarano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torregroza-Espinosa, A.C., Martínez-Mera, E., Castañeda-Valbuena, D. et al. Contamination Level and Spatial Distribution of Heavy Metals in Water and Sediments of El Guájaro Reservoir, Colombia. Bull Environ Contam Toxicol 101, 61–67 (2018). https://doi.org/10.1007/s00128-018-2365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2365-x

Keywords

Navigation