Validation of a Sulfuric Acid Digestion Method for Inductively Coupled Plasma Mass Spectrometry Quantification of TiO2 Nanoparticles

  • Preston S. Watkins
  • Benjamin T. Castellon
  • Chiyen Tseng
  • Moncie V. Wright
  • Cole W. Matson
  • George P. Cobb


A consistent analytical method incorporating sulfuric acid (H2SO4) digestion and ICP-MS quantification has been developed for TiO2 quantification in biotic and abiotic environmentally relevant matrices. Sample digestion in H2SO4 at 110°C provided consistent results without using hydrofluoric acid or microwave digestion. Analysis of seven replicate samples for four matrices on each of 3 days produced Ti recoveries of 97% ± 2.5%, 91 % ± 4.0%, 94% ± 1.8%, and 73 % ± 2.6% (mean ± standard deviation) from water, fish tissue, periphyton, and sediment, respectively. The method demonstrated consistent performance in analysis of water collected over a 1 month.


Titanium dioxide Nanoparticle Analysis ICP-MS Tissue Sediment Water 



The authors thank Jing Liu for laboratory assistance in preparing equipment and digests. The authors would also thank the Baylor Mass Spectrometry Center and the Baylor Center for Microscopy and Imaging for the use of instrumentation.


Funding was provided by the C. Gus Glasscock, Jr. Endowed Fund for Excellence in Environmental Science, Baylor University, the National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement DBI-1266252, Center for the Environmental Implications of NanoTechnology (CEINT). Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or the EPA.


  1. Almusallam AS, Abdulraheem YM, Shahat M, Korah P (2012) Aggregation behavior of titanium dioxide nanoparticles in aqueous environments. J Dispers Sci Technol 33(5):728–738CrossRefGoogle Scholar
  2. Cava-Montesinos P, Cervera ML, Pastor A, de la Guardia M (2005) Room temperature acid sonication ICP-MS multielemental analysis of milk. Anal Chim Acta 531(1):111–123CrossRefGoogle Scholar
  3. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  4. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefGoogle Scholar
  5. Dutschke F, Irrgeher J, Profrock D (2017) Optimisation of an extraction/leaching procedure for the characterisation and quantification of titanium dioxide (TiO2) nanoparticles in aquatic environments using SdFFF-ICP-MS and SEM-EDX analyse. Anal Methods 9:3626CrossRefGoogle Scholar
  6. Faucher S, Lespes G (2015) Quantification of titanium from TiO2 particles in biological tissue. J Trace Elem Med Biol 32:40–44CrossRefGoogle Scholar
  7. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359CrossRefGoogle Scholar
  8. Kang J, Okabe TH (2014) Production of titanium dioxide directly from titanium ore through selective chlorination using titanium tetrachloride. Mater Trans 55(3):591–598CrossRefGoogle Scholar
  9. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17CrossRefGoogle Scholar
  10. Kim W, Tachikawa T, Moon G-h, Majima T, Choi W (2014) Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew Chem Int Ed 53(51):14036–14041CrossRefGoogle Scholar
  11. Kim SH, Lim Y, Hwang E, Yim Y-H (2016) Development of an ID ICP-MS reference method for the determination of Cd, Hg and Pb in a cosmetic powder certified reference material. Anal Methods 8(4):796–804CrossRefGoogle Scholar
  12. Krystek P, Tentschert J, Nia Y et al (2014) Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 406(16):3853–3861Google Scholar
  13. Linsinger TPJ, Chaudhry Q, Dehalu V et al (2013) Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem 138(2–3):1959–1966CrossRefGoogle Scholar
  14. Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263CrossRefGoogle Scholar
  15. Mudunkotuwa IA, Anthony TR, Grassian VH, Peter TM (2016) Accurate quantification of TiO2 nanoparticles collected on air filters using a microwave-assisted acid digestion method. J Occup Environ Hyg 13(1):30–39CrossRefGoogle Scholar
  16. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453CrossRefGoogle Scholar
  17. Myers WD, Ludden PA, Nayigihugu V, Hess BW (2004) Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J Anim Sci 82(1):179–183CrossRefGoogle Scholar
  18. Nations S, Wages M, Cañas JE, Maul J, Theodorakis C, Cobb GP (2011) Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83(8):1053–1061CrossRefGoogle Scholar
  19. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43(12):4227–4233CrossRefGoogle Scholar
  20. Rousis NI, Pasias IN, Thomaidis NS (2014) Attenuation of interference in collision/reaction cell inductively coupled plasma mass spectrometry, using helium and hydrogen as cell gases—application to multi-element analysis of mastic gum. Anal Methods 6(15):5899–5908CrossRefGoogle Scholar
  21. Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33(10):1131–1142CrossRefGoogle Scholar
  22. Schmid K, Riediker M (2008) Use of nanoparticles in swiss industry: a targeted survey. Environ Sci Technol 42(7):2253–2260CrossRefGoogle Scholar
  23. Schmidt J, Vogelsberger W (2006) Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J Phys Chem B 110(9):3955–3963CrossRefGoogle Scholar
  24. Shaw BJ, Ramsden CS, Turner A, Handy RD (2013) A simplified method for determining titanium from TiO2 nanoparticles in fish tissue with a concomitant multi-element analysis. Chemosphere 92(9):1136–1144. CrossRefGoogle Scholar
  25. Simonin M, Martins JMF, Uza G, Vince E, Richaume A (2016) Combined study of titanium dioxide nanoparticle transport and toxicity on microbial nitrifying communities under single and repeated exposures in soil columns. Environ Sci Technol 50:10693–10699CrossRefGoogle Scholar
  26. Tambach TJ, Veld H, Griffioen J (2009) Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis study. Appl Geochem 24(11):2144–2151CrossRefGoogle Scholar
  27. Tan SH, Horlick G (1986) Background spectral features in inductively coupled plasma/mass spectrometry. Appl Spectrosc 40(4):445–460CrossRefGoogle Scholar
  28. Weir A, Westerhoff P, Fabricius L, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250CrossRefGoogle Scholar
  29. Zhang J, Wages M, Cox SB et al (2012) Effect of titanium dioxide nanomaterials and ultraviolet light coexposure on African clawed frogs (Xenopus laevis). Environ Toxicol Chem 31(1):176–183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental ScienceBaylor UniversityWacoUSA

Personalised recommendations