Skip to main content
Log in

Adsorption, Bioaccumulation and Kinetics Parameters of the Phytoremediation of Cobalt from Wastewater Using Elodea canadensis

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Present paper investigates the phytoremediation of cobalt from wastewaters using Elodea canadensis. Bioaccumulation tests were conducted at various concentrations of cobalt ranging from 1 to 15 mg/L. Final concentrations of cobalt in wastewaters, after phytoremediation, were less than 1 mg/L. E. canadensis’ hyperaccumulator character with regard to cobalt is emphasised by the amount of cobalt retained: 0.39% ± 0.02% of dry mass at an initial concentration in wastewater of 15 mg/L. After 14 days of exposure to contaminant, the biomass as well as the relative growth rate has increased with the amount of cobalt in wastewaters, the plant manifesting an excellent tolerance to cobalt exposure. Adsorption of cobalt ions by E. canadensis can be well described by the Langmuir adsorption isotherm and the pseudo-second-order model equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuh MA, Akpomie GK, Nwagbara NK, Abia-Bassey N, Ape DI, Ayabie BU (2013) Kinetic rate equations application on the removal of copper(II) and zinc(II) by unmodified lignocellulosic fibrous layer of palm tree trunk- single component system studies. Int J Basic Appl Sci 1(4):800–809

    Google Scholar 

  • Adeogun A, Idowu KSO, Durosanya JB, Balogun SE (2012) Kinetics and equilibrium parameters of biosorption and bioaccumulation of lead ions from aqueous solutions by Trichoderma longibrachiatum. J Microbiol Biotechnol Food Sci 1(5):1121–1234

    Google Scholar 

  • Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater 166:925–993

    Article  CAS  Google Scholar 

  • Bianconi D, Pietrini F, Massacci A, Iannelli MA (2013) Uptake of cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications. Proceedings of the 16th International Conference on Heavy Metals in the Environment; Rome, Italy. E3S Web of Conferences, vol 1. https://doi.org/10.1051/e3sconf/213002

  • Bohli T, Villaescusa I, Ouederni A (2013) Comparative study of bivalent cationic metals adsorption Pb(II), Cd(II), Ni(II) and Cu(II) on olive stones chemically activated carbon. J Chem Eng Process Technol 4(4):1–7

    Article  Google Scholar 

  • Carvalho KM, Martin DF (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manage 39:33–36

    Google Scholar 

  • Chakraborty R, Mukherjee S (2013) Kinetic studies of chromium phytoremediation for polishing treated tannery effluent by water lettuce (Pistia stratiotes). Asian J Exp Biol Sci 4(2):179–184

    CAS  Google Scholar 

  • Chojnacka K (2007) Bioaccumulation of Cr(III) ions by blue-green alga Spirulina sp. Part I. A comparison with biosorption. Am J Agric Biol Sci 2(4):218–223

    Article  Google Scholar 

  • Dotto GL, Cunha JM, Calgaro CO, Tanabe EH, Bertuol DA (2015) Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J Hazard Mater 295:29–36

    Article  CAS  Google Scholar 

  • El Hamidi A, Arsalane S, Halim M (2012) Kinetics and isotherm studies of copper removal by brushite calcium phosphate: linear and non-linear regression comparison. E-J Chem 9(3):1532–1542

    Article  Google Scholar 

  • Halaimi FZ, Kellali Y, Couderchet M, Semsari S (2014) Comparison of biosorption and phytoremediation of cadmium and methyl parathion, a case-study with live Lemna gibba and Lemna gibba powder. Ecotox Env Safe 105:112–120

    Article  CAS  Google Scholar 

  • Hameed BH, Mahmoud DK, Ahmad AL (2008) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J Hazard Mater 158:65–72

    Article  CAS  Google Scholar 

  • Harun NH, Tuah PM, Markom NZ, Yusof MY (2008) Distribution of heavy metals in Monochoria hastata and Eichhornia crassipes in natural habitats. In International Conference on Environmental Research and Technology Penang, Malaysia, pp 550–553

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazar Mater B 136:681–689

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE 76B:332–340

    Article  Google Scholar 

  • Kara Y, Zeytunluoglu A (2007) Bioaccumulation of toxic metals (Cd and Cu) by Groenlandia densa (L.) Fourr. Bull Environ Contam Toxicol 79:609–612

    Article  CAS  Google Scholar 

  • Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater B 137:1538–1544

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    Article  CAS  Google Scholar 

  • Lingamdinne LP, Koduru JR, Hoon R, Choi YL, Chang YY, Yang JK (2016) Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165:90–96

    Article  CAS  Google Scholar 

  • Lux A, Sottnikova A, Opatrna J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  Google Scholar 

  • Megateli S, Dosnon-Olette R, Trotel-Aziz P, Geffard A, Semsari S, Couderchet M (2013) Simultaneous effects of two fungicides (copper and dimethomorph) on their phytoremediation using Lemna minor. Ecotoxicology 22:683–692

    Article  CAS  Google Scholar 

  • Mishra KK, Rai UN, Prakash O (2007) Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes. Environ Monit Assess 130:237–243

    Article  CAS  Google Scholar 

  • Musapatika ET, Singh R, Moodley K, Nzila C, Onyango MS, Ochieng A (2012) Cobalt removal from wastewater using pine sawdust. Afr J Biotechnol 11(39):9407–9415

    CAS  Google Scholar 

  • NTPA-001/2002 (2002) Regulation regarding the maximum allowed loads of pollutants from industrial and urban wastewater discharged into natural aquatic environments. The Official Journal of Romania

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Env Sci Tec 39(9):697–753

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon KH, Kang SY, Lee J, Kim KW, Moon SH (2002) Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J Hazard Mater B 92:185–198

    Article  CAS  Google Scholar 

  • Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediat 19(1):87–96. https://doi.org/10.1080/15226514.2016.1216078

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2003) Biomonitoring of water pollution with Elodea canadensis. A case study of three small polish rivers with different levels of pollution. Water Air Soil Pollut 145:139–153

    Article  CAS  Google Scholar 

  • Sdiri AT, Higashi T, Jamoussi F (2014) Adsorption of copper and zinc onto natural clay in single and binary systems. Int J Environ Sci Technol 11:1081–1092

    Article  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Review metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Syuhaida AWA, Norkhadijah SIS, Praveena SM, Suriyani A (2014) The Comparison of Phytoremediation Abilities of Water Mimosa and Water Hyacinth. ARPN J Sci Tech 4(12):722–731

    Google Scholar 

  • Thajeel AS (2013) Isotherm, kinetic and thermodynamic of adsorption of heavy metal ions onto local activated carbon. Aquat Sci Technol 1(2):53–77

    Google Scholar 

  • Zimmels Y, Kirzhner F, Malkovskaja A (2007) Advanced extraction and lower bounds for removal of pollutants from wastewater by water plants. Water Environ Res 79(3):287–296

    Article  CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatic L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cosmin Vancea or Simona Popa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosoarca, G., Vancea, C., Popa, S. et al. Adsorption, Bioaccumulation and Kinetics Parameters of the Phytoremediation of Cobalt from Wastewater Using Elodea canadensis. Bull Environ Contam Toxicol 100, 733–739 (2018). https://doi.org/10.1007/s00128-018-2327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2327-3

Keywords

Navigation