Skip to main content
Log in

Aquatic Humic Substances: Relationship Between Origin and Complexing Capacity

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Aiming to determine the relationship between source and complexing capacity, humic substances obtained from three sites (Sorocaba and Itapanhau Brasilian rivers, and Xochimilco Lake in Mexico) were studied. Copper, manganese, zinc and arsenic complexing capacity were determined for the three substances under various pH conditions. Results showed similar complexing capacity for the three elements depending on the chemistry of each one and on the physico–chemical conditions. Speciation diagrams showed that these conditions affect both, the humic substances, and the transition metals and arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30(4):345–353

    Article  CAS  Google Scholar 

  • Bhattacharya P, Welch AH, Stollenwerkc KJ, McLaughlind MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:2–3; 109–120

    Article  Google Scholar 

  • Burba P, Rocha J, Klockow D (1994) Labile complexes of trace metals in aquatic humic substances: investigations by means of an ion exchange-based flow procedure. Fresenius J Anal Chem 349:800–807

    Article  CAS  Google Scholar 

  • Cabaniss SE (2009) Forward modeling of metal complexation by NOM: I. A priori prediction on of conditional constants and speciation. Environ Sci Technol 43:2838–2844

    Article  CAS  Google Scholar 

  • Camargo VM, Cruz TLE (1999) Substancias húmicas en agua para abastecimineto. Revista Ingeniería e Investigación 44:63–72

    Google Scholar 

  • Chakraborty P, Chakrabarti CL (2008) Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwanne River fulvic acid. Water Air Soil Pollut 195(1–4):63–71

    Article  CAS  Google Scholar 

  • Chen C, Wang X, Jiang H, Hu W (2007) Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf A 302:121–125

    Article  CAS  Google Scholar 

  • Corami F, Capodaglio G, Turetta C, Bragadin M, Calace M, Petronio B (2007) Complexation of cadmium and copper by fluvial humic matter and effects on their toxicity. Ann Chim 97(1–2):25–37

    Article  CAS  Google Scholar 

  • Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17(8):544–553

    Article  CAS  Google Scholar 

  • De Oliveira LK, De AlmeidaMC, Fernandes, Kriese T, Rosa K AH (2015) Interaction of arsenic species with tropical river aquatic humic substancesenriched with aluminum and iron. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-5816-5

    Google Scholar 

  • Elkins KM, Nelson DJ (2001) Fluorescence and FT-IR spectroscopic studies of Suwanne river fulvic acid complexation with aluminum, terbium and calcium. J Inorg Biochem 87:81–96

    Article  CAS  Google Scholar 

  • Erickson RJ, Benoit DA, Mattson VR, Leonard EN, Nelson HP (1996) The effects of water chemistry on the toxicity of copper to fathead minnous. Environ Toxicol Chem 15(2):181–193

    Article  CAS  Google Scholar 

  • Gaetke LM, Kuang CC (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163

    Article  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1999) Manganese and calcium transport in mitochondria, implications for manganese toxicity. PubMed Central 20:2–3; 445–453

    Google Scholar 

  • Goveia D, Aparecida LF, Burba P, Fernandes F, Dias F, Rosa AH (2010) Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids. Anal Bioanal Chem 397:851–860

    Article  CAS  Google Scholar 

  • Irving H, WilliamsR., (1953) The stability of transition-metal complexes. J Chem Soc. https://doi.org/10.1039/JR9530003192

    Google Scholar 

  • John J, Salbu B, Gjessing ET, Bjornstad HE (1988) Effect of pH, humus concentration and molecular weight on conditional stability constants of cadmium. Wat Res 22(11):1381–1388

    Article  CAS  Google Scholar 

  • Kononova MM (1966) Soil organic matter its nature, its role in soil formation and in soil fertility, 2a edn. Pergamon Press, Oxford

    Google Scholar 

  • Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546

    Article  Google Scholar 

  • Laglera LM, Van den Berg CMG (2009) Evidence for geochemical control iron by humic substances in seawater. Limnol Oceanogr 54(2):610–619

    Article  CAS  Google Scholar 

  • Lambert J, Buddrus J, Burba P (1995) Evaluation of conditional stability constants of dissolved aluminum/humic substance complexes by means of 27Al nuclear magnetic resonance. J Anal Chem 351:83–87

    CAS  Google Scholar 

  • Lippold H, Lippmann-Pipke J (2009) Effect of humic matter on metal adsorption onto clay material: testing the linear additive model. J of Contam Hidrol 109:40–48

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Chen Y, Lippold H, Lippman-Pipke J (2010) Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications. J Environ Sci 22(11):1695–1702

    Article  CAS  Google Scholar 

  • López-López E, Sedeño-Dáz JE, Perozzi F (2006) Lipid peroxidation and acetylcholisterase activity as biomarkers in the Black Sailfin GSoodeid, Girardinichthys viviparous (Bustammonte), exposed to wáter from Lake Xochimilco (Mexico). Aquat Ecosyst Health Manag 9(3):379–385

    Article  Google Scholar 

  • Munier-Lamy C, Adrian PH, Berthelin J, Rouiller J (1986) Comparison of binding abilities of fulvic and humic acids extracted from recent marine sediments with UO2 2+. Org Geochem 9(6):258–292

    Article  Google Scholar 

  • Rudd T, Sterritt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Water Res 18(3):379–384

    Article  CAS  Google Scholar 

  • Sachs S, Bernhard G (2011) Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma 162:132–140

    Article  CAS  Google Scholar 

  • Silva-Pinto V, Arriaza B, Standen V, (2010) Evaluación de la frecuencia de espina bífida oculta y su posible relación con el arsénico ambiental en una muestra prehispánica de la Quebrada de Camarones, norte de Chile. Rev Med Chile 138:461–469

    Article  Google Scholar 

  • Su Y, Liu H, Yang J (2012) Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nonquan Coast of Taihu Lake China. Bull Environ Contam Toxicol 89:439–443. https://doi.org/10.1007/500128-012-0666-z

    Article  CAS  Google Scholar 

  • Thurman EM, Malcolm RL (1981) Preparative isolation of aquatic humic substances. Am Chem Soc 15(4):463–466

    CAS  Google Scholar 

  • Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim 56:3627–3641

    Article  CAS  Google Scholar 

  • Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al and Fe bindind by humic substances in freshwaters. Geochim Cosmochim 66(18):3211–3224

    Article  CAS  Google Scholar 

  • Xue H, Kistler D, Sigg L (1995) Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol Oceanogr 40(6):1142–1152

    Article  CAS  Google Scholar 

  • Yang R, Van den Berg CMG (2009) Metal complexation by humic substances in seawater. Environ Sci Technol 43:7192–7197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CONACYT by Grant Number 447460, Olivia Cruz, Alejandra Aguayo and Nora Ceniceros by their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de Jesús González-Guadarrama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Guadarrama, M.J., Armienta-Hernández, M.A. & Rosa, A.H. Aquatic Humic Substances: Relationship Between Origin and Complexing Capacity. Bull Environ Contam Toxicol 100, 627–633 (2018). https://doi.org/10.1007/s00128-018-2318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2318-4

Keywords

Navigation