Skip to main content
Log in

Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H2O2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aftab T, Khan MMA, Idrees M et al (2010) Boron induced oxidative stress, antioxidant defence response and changes in artemisinin content in Artemisia annua L. J Agron Crop Sci 196:423–430

    Article  CAS  Google Scholar 

  • Aksakal O, Esim N (2015) Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays. Environ Sci Pollut Res 22:7120–7128

    Article  CAS  Google Scholar 

  • Aksakal O, Erturk FA, Sunar S et al (2013) Assessment of genotoxic effects of 2, 4-dichlorophenoxyacetic acid on maize by using RAPD analysis. Ind Crops Prod 42:552–557

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Ardıc M, Sekmen AH, Tokur S et al (2009) Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biol 11:328–338

    Article  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  Google Scholar 

  • Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res 521:151–163

    Article  CAS  Google Scholar 

  • Bandeoğlu E, Eyidoğan F, Yücel M, Öktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  Google Scholar 

  • Banuelos GS, Cardon G, Pflaum T, Akohoue S (1992) Comparison of dry ashing and wet acid digestion on the determination of boron in plant tissue. Common Soil Sci Plant Anal 23:17–20

    Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Article  CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Biol 49:481–500

    Article  CAS  Google Scholar 

  • Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  Google Scholar 

  • Cenkci S, Yıldız M, Ciğerci İH et al (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–906

    Article  CAS  Google Scholar 

  • Cenkci S, Ciğerci İH, Yıldız M et al (2010a) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Cenkci S, Yıldız M, Ciğerci İH et al (2010b) Evaluation of 2, 4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf 73:1558–1564

    Article  CAS  Google Scholar 

  • Cervilla LM, Blasco B, Ríos JJ et al (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    Article  CAS  Google Scholar 

  • De Wolf H, Blust R, Backeljau T (2004) The use of RAPD in ecotoxicology. Mutat Res 566:249–262

    Article  Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19:11–15

    Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Erdal S, Genc E, Karaman A et al (2014) Differential responses of two wheat varieties to increasing boron toxicity. Changes on antioxidant activity, oxidative damage and DNA profile. J Environ Protect Ecol 15:1217–1229

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Jia L (2011) Is reactive oxygen species (ROS) the underlying factor for inhibited root growth in Osspr1? Plant Signal Behav 6:1024–1025

    Article  CAS  Google Scholar 

  • John MK, Chuah HH, Neufeld JH (1975) Application of improved azomethine-H method to the determination of boron in soils and plants. Anal Lett 8:559–568

    Article  CAS  Google Scholar 

  • Kalayci M, Alkan A, Cakmak I et al (1998) Studies on differential response of wheat cultivars to boron toxicity. Euphytica 100:123–129

    Article  CAS  Google Scholar 

  • Karabal E, Yücel M, Öktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M (2015) Exogenous application of nitric oxide promotes growth and oxidative defense system in highly boron stressed tomato plants bearing fruit. Sci Hortic 185:43–47

    Article  CAS  Google Scholar 

  • Kekec G, Sakcali MS, Uzonur I (2010) Assessment of genotoxic effects of boron on wheat (Triticum aestivum L.) and bean (Phaseolus vulgaris L.) by using RAPD analysis. Bull Environ Contam Toxicol 84:759–764

    Article  CAS  Google Scholar 

  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am J Agric Biol Sci 7:255–270

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Li PJ et al (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161:878–883

    Article  CAS  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G et al (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Nable RO (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–52

    Article  CAS  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Papadakis IE, Dimassi KN, Bosabalidis AM et al (2004) Boron toxicity in “Clementine” mandarin plants grafted on two rootstocks. Plant Sci 166:539–547

    Article  CAS  Google Scholar 

  • Ram SG, Parthiban KT, Kumar RS et al (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Article  CAS  Google Scholar 

  • Reid RJ (2013) Boron toxicity and tolerance in crop plants. Crop improvement under adverse conditions. Springer, New York, pp 333–346

    Book  Google Scholar 

  • Reid RJ, Hayes JE, Post A et al (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27:1405–1414

    Article  CAS  Google Scholar 

  • Roessner U, Patterson JH, Forbes MG et al (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142:1087–1101

    Article  CAS  Google Scholar 

  • Sakcali MS, Kekec G, Uzonur I et al (2015) Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.). Toxicol Ind Health 31:712–720

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Shen BO, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  CAS  Google Scholar 

  • Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4:63–69

    Google Scholar 

  • Torun AA, Yazici A, Erdem H, Çakmak İ (2006) Genotypic variation in tolerance to boron toxicity in 70 durum wheat genotypes. Turk J Agric For 30:49–58

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang B-L, Shi L, Li Y-X, Zhang W-H (2010) Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231:1301–1309

    Article  CAS  Google Scholar 

  • Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332

    Article  CAS  Google Scholar 

  • Yin T, Huang M, Wang M et al (2001) Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers. Genome 44:602–609

    Article  CAS  Google Scholar 

  • Young RA, Kelly JD (1997) RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci 37:940–946

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is one part of a PhD dissertation of the first author, funded by the Scientific Research Projects Coordination Unit of Muğla Sıtkı Koçman University (Grant Number 15/153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Köksal Küçükakyüz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çatav, Ş.S., Genç, T.O., Kesik Oktay, M. et al. Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 100, 502–508 (2018). https://doi.org/10.1007/s00128-018-2292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2292-x

Keywords

Navigation