Skip to main content
Log in

Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

To evaluate the removal of potassium cyanide (KCN) and its toxicity in algae, an initial comprehensive analysis was performed with Chlorella vulgaris. The algae showed potential removal capability for KCN, with the maximal removal rate of 61%. Moreover, effects of KCN on growth, cellular morphology and antioxidant defense system of C. vulgaris were evaluated. Cell number and chlorophyll a content decreased in most cases, with the maximal inhibition rates of 48% and 99%, respectively. The 100 mg L− 1 KCN seriously damaged the algal cell membrane. Additionally, activity of superoxide dismutase (SOD) was promoted by KCN exposure among 0.1–50 mg L− 1 and inhibited by 100 mg L− 1 KCN, while the malondialdehyde (MDA) content gradually decreased in C. vulgaris with increasing exposure concentration compared to the control. The present study reveals that C. vulgaris is useful in bio-treatment of cyanide-contaminated aquatic ecosystem, except in high concentrations which would cause overwhelming effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DJ, Komen JV, Pickett TM (2001) Biological cyanide degradation. In Young C (ed) Cyanide: social, industrial and economic aspects. The Metals Society, Pittsburgh, pp 203–213

    Google Scholar 

  • Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21:501–511

    Article  CAS  Google Scholar 

  • Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450

    Article  CAS  Google Scholar 

  • Akcil A, Karahan AG, Ciftci H, Sagdic O (2003) Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp). Mineral Eng 16:643–649

    Article  CAS  Google Scholar 

  • Arellano CAP, Martínez SS (2007) Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode. Int J Hydrogen Energy 32:3163–3169

    Article  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial waste-waters and its removal: a review on biotreatment. J Hazard Mater 163:1–11

    Article  Google Scholar 

  • Editorial Committee of Ministry Environmental protection of China (2002) Methods of water and waste water monitoring and analysis. 4th edn. China Environment and Science Publisher, Beijing

    Google Scholar 

  • Essam T, ElRakaiby M, Agha A (2014) Remediation of the effect of adding cyanides on an algal/bacterial treatment of a mixture of organic pollutants in a continuous photobioreactor. Biotechnol Lett 36:1773–1781

    Article  CAS  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A, Karahan AG (2004) Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. Hydrometallurgy 72:167–176

    Article  CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    Article  CAS  Google Scholar 

  • Kelada NP (1989) Automated direct measurements of total cyanide species and thiocyanate, and their distribution in wastewater and sludge. J Water Pollut Control Fed 61:350–356

    CAS  Google Scholar 

  • Kenfield CF, Qin R, Semmens MJ, Cussler EL (1988) Cyanide recovery across hollow fiber gas membranes. Environ Sci Technol 22:1151–1155

    Article  CAS  Google Scholar 

  • Li R, Chen GZ, Tam NFY, Luan TG, Shin PK, Cheung SG, Liu Y (2009) Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf 72:321–328

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Lavoie M, Fan X, Bai X, Qian H (2015) Ammonium reduces chromium toxicity in the freshwater alga Chlorella vulgaris. Appl Microbiol Biotechnol 99:3249–3258

    Article  CAS  Google Scholar 

  • Lordi DT, Lue-Hing C, Whitebloom SW, Kelada N, Dennison S (1980) Cyanide problems in municipal wastewater treatment plants. J Water Pollut Control Fed 52:597–609

    CAS  Google Scholar 

  • Manar R, Bonnard M, Rast C, Veber A, Vasseur P (2011) Ecotoxicity of cyanide complexes in industrially contaminated soils. J Hazard Mater 197:369–377

    Article  CAS  Google Scholar 

  • Ministry Environmental Protection of China (2009) Water quality-determination of cyanide-volumetric and spectrophotometry method (HJ484-2009) Available at http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/200910/W020111114532654963447.pdf. (In Chinese)

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Moreno-Garrido I, Lubián LM, Soares AMVM (2000) Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. Ecotoxicol Environ Saf 47:112–116

    Article  CAS  Google Scholar 

  • Novak D, Franke-Whittle IH, Pirc ET, Jerman V, Insam H, Logar RM, Stres B (2013) Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water. Water Res 47:3644–3653

    Article  CAS  Google Scholar 

  • Pitanga FL (2011) The effect of sodium hypochlorite in different aquatic organisms. Dissertation, University of Aveiro, 20

  • Rashkov GD, Dobrikova AG, Pouneva ID, Misra AN, Apostolova EL (2012) Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sens Actuators B 161:151–155

    Article  CAS  Google Scholar 

  • Shang YZ, Qin BW, Cheng JJ, Miao H (2008) Effect of Scutellaria falvonoids on KCN-induced damages in rat pheochromocytoma PC12 cells. Indian J Med Res 127:610

    Google Scholar 

  • Soldán P, Pavonič M, Bouček J, Kokeš J (2001) Baia Mare accident—brief ecotoxicological report of Czech experts. Ecotoxicol Environ Saf 49:255–261

    Article  Google Scholar 

  • Song NH, Yin X, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Article  Google Scholar 

  • Tarras-Wahlberg NH, Flachier A, Lane SN, Sangfors O (2001) Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador. Sci Total Environ 278:239–261

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • Wu GL, Cui J, Tao L, Yang H (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology 19:124–132

    Article  CAS  Google Scholar 

  • Xiong B, Zhang W, Chen L, Lin KF, Guo MJ, Wang WL, Cui XH, Bi HS, Wang B (2014) Effects of Pb (II) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription. Environ Toxicol 29:1346–1354

    CAS  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    Article  CAS  Google Scholar 

  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20:337–347

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the basic research project of the State Key Laboratory of NBC Protection for Civilian of China and the Fundamental Research Funds for the Central Universities (KYLX16_0810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, G., Ding, J. et al. Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris). Bull Environ Contam Toxicol 100, 228–233 (2018). https://doi.org/10.1007/s00128-017-2208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2208-1

Keywords

Navigation