The formation of magnetite ores of the Glubochenskoe deposit, Turgai iron belt, Russia: new structural, mineralogical, geochemical, and isotopic constraints

Abstract

The magnetite ore bodies of the Paleozoic Glubochenskoe iron deposit (315.7 Mt at ~ 30.15% Fe) are located in the northern part of the Valerianovka arc zone (“Turgai belt”) within the Transuralian Megazone, Russia. They occur in calcareous-volcaniclastic rocks, exhibit layered textures, and contain primary seafloor hematite ores. The sequence of mineral formation reflects the diagenetic to metamorphic evolution of the iron ores: (i) finely dispersed hematite-1; (ii) tabular hematite-2 crystals; (iii) pseudomorphic magnetite-1 after hematite-2; (iv) zoned magnetite-2 crystals with relict hematite-2 (or magnetite-1); (v) thin oscillatory zoned magnetite-3 crystals; and (vi) magnetite-4 porphyroblasts. A gangue assemblage of Fe-rich and Fe–Mg chlorite, illite, quartz, albite, carbonates, rutile, and apatite with rare monazite, xenotime, and zircon occurs in ore and calcareous-volcaniclastic layers. The gangue clasts (volcanic glass, Ca–Mg and Ti minerals, and altered volcanic rocks) are replaced by hematite and further by magnetite. Low siderite δ13C values from layered magnetite ores (− 8.0 to − 19.5‰ PDB) indicate the presence of primary organic matter in calcareous-volcaniclastic rocks. Siderite δ18O values (6.5 to 17.4‰ SMOW) are evidence of isotopic exchange between minerals and fluids during metamorphism. Negative δ34S values for pyrite (down to − 4.5‰) likely indicate derivation of sulfur from organic matter in clastic sedimentary rocks. LA-ICP-MS analysis of zoned magnetite demonstrates highly variable Si, Al, Mg, Na, K, Ca, Ti, Mn, Rb, Y, Zr, Sr, U, and P contents, related to inclusions of gangue minerals. Elevated homogenous V and Ga contents and low contents of Sc, Co, Ni, Ge, As, Mo, Sn, and W (average < 5 ppm) indicate their incorporation into the structure of magnetite. All element contents (except V and Ga) are significantly higher in the inner zone of magnetite (magnetite-1) compared to the outer zone of magnetite (magnetite-2). The calcareous-volcaniclastic material, which was altered during submarine weathering and leaching, is proposed to be a major source of iron to form oxides. Altogether, the paragenetic sequence, and the mineralogical and geochemical data suggest the Glubochenskoe deposit can be characterized as a volcanic-sedimentary type of banded iron formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ahn JH, Peacor DR (1985) Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments. Clay Clay Miner 33:228–236

    Article  Google Scholar 

  2. Alirezaei S, Cameron EM (2001) Variations of sulfur isotopes in metamorphic rocks from Bamble Sector, southern Norway: a laser probe study. Chem Geol 181:23–45. https://doi.org/10.1016/S0009-2541(01)00266-2

    Article  Google Scholar 

  3. Ayres DE (1972) Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge Member, Hamersley Group, Western Australia. Econ Geol 67:1214–1233

    Article  Google Scholar 

  4. Ayupova NR, Maslennikov VV, Tessalina SG, Shilovsky OP, Sadykov SA, Hollis SP, Danyushevsky LV, Safina NP, Statsenko EO (2017) Tube fossils from gossanites of the Urals VHMS deposits, Russia: authigenic mineral assemblages and trace element distributions. Ore Geol Rev 85:107–130. https://doi.org/10.1016/j.oregeorev.2016.08.003

    Article  Google Scholar 

  5. Baccar MB, Fritz B, Made B (1993) Diagenetic albitization of K-feldspar and plagioclase in sandstone reservoirs: thermodynamic and kinetic modeling. J Sediment Petrol 63(6):1100–1109

    Google Scholar 

  6. Bajwah ZU, Seccombe PK, Offier R (1987) Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22:292–300

    Article  Google Scholar 

  7. Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H (2004) Microbial alteration of volcanic glass in modern and ancient oceanic crust as a proxy for studies of extraterrestrial material. Lunar and Planetary Science XXXV. 1248 pdf. https://doi.org/10.1016/j.epsl.2005.11.011

  8. Baur ME, Hayes JM, Studley SA, Walter MR (1985) Millimeter scale variations of stable isotope abundance in carbonate from banded iron formations in the Hamersley group of Western Australia. Econ Geol 80:270–282

    Article  Google Scholar 

  9. Beaufort D, Rigault C, Billon S, Bil V (2015) Chlorite and chloritization processes through mixed-layer mineral series in low temperature geological systems – a review. Clay Miner 50:497–523. https://doi.org/10.1180/claymin.2015.050.4.06

    Article  Google Scholar 

  10. Bekmukhametov AE (1987) Magmatic iron formation. Nedra, Moscow (in Russian)

    Google Scholar 

  11. Belevtsev YN, Buharov VP, Naumenko VV, Goncharuk AF, Popov BA, Stepanov VA, Usenko AI (1982) About volcanogenic-sedimentary origin of magnetite ores of Urals. Geol Ore Dep 1:53–75 (in Russian)

    Google Scholar 

  12. Bontognali TRR, Fischer WW, Föllm KB (2013) Siliciclastic associated banded iron formation from the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res 226:116–124

    Article  Google Scholar 

  13. Bowman JR (1998) Stable isotope systematic of skarns. In: Lentz, DR (Ed.) Mineralized intrusion-related Skarn systems. Short course series 26. Min Assoc Canada, Quebec, pp 99–146

  14. Bralia A, Sabatini G, Troja F (1979) A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineral Deposita 14:353–374

    Article  Google Scholar 

  15. Brown DA, Gross GA, Sawicki JA (1995) A review of the microbial geochemistry of banded iron-formations. Can Mineral 33:1321–1333

    Google Scholar 

  16. Brown D, Puchkov V, Alvarez-Marron J, Bea F, Perez-Estaun A (2006) Tectonic processes in the Southern and Middle Urals: an overview. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics 32, vol 32. Geological Society, London, Memoirs, pp 407–419. https://doi.org/10.1144/GSL.MEM.2006.032.01.24

    Google Scholar 

  17. Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Mineral Deposita 57:3–18. https://doi.org/10.1007/s001260050187

    Article  Google Scholar 

  18. Cuadros J, Michalski JR, Dekov V, Bishop J, Fiore S, Dyar MD (2013) Crystal-chemistry of interstratified Mg/Fe-clay minerals from seafloor hydrothermal sites. Chem Geol 360–361:142–158. https://doi.org/10.1016/j.chemgeo.2013.10.016

    Article  Google Scholar 

  19. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796. https://doi.org/10.1007/s00126-014-0529-0

    Article  Google Scholar 

  20. Deditius AP, Utsunomiya S, Ewing RC, Chryssoulis SL, Venter D, Kesler SE (2009) Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 37:707–710. https://doi.org/10.1130/G25781A.1

    Article  Google Scholar 

  21. Deditius AP, Reich M, Simon A, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173(6):46. https://doi.org/10.1007/s00410-018-1474-1

    Article  Google Scholar 

  22. Drits VA, Kossovskaya AG (1989) Smectites-indicators of geological environments of continents and oceans. In: Halodov VN (ed) Genesis of sediments and fundamental problems of lithology. Nauka, Moscow, pp 7–37 (in Russian)

    Google Scholar 

  23. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335. https://doi.org/10.1007/s00126-011-0334-y

    Article  Google Scholar 

  24. Dymkin AM, Prugov VP (1980) Stratiform type of iron ores and their genetic signature. Nauka, Moscow (in Russian)

    Google Scholar 

  25. Exon NF, Cronan DS (1983) Hydrothermal iron deposits and associated sediments from submarine volcanoes off Vanuatu, southwest Pacific. Mar Geol 52(3-4):M43–M52. https://doi.org/10.1016/0025-3227(83)90052-X

    Article  Google Scholar 

  26. Fischer WR, Schwertmann U (1975) The formation of hematite from amorphous iron(III)hydroxide. Clays Clay Min 23:33–37. https://doi.org/10.1346/ccmn.1975.0230105

    Article  Google Scholar 

  27. Flick H, Nesbor HD, Behnisch R (1990) Iron ore of the Lahn-Dill type formed by diagenetic seeping of pyroclastic sequences – a case study on the Schalstein section at Gänsberg (Weilburg). Geol Rundsch 79(2):401–415

    Article  Google Scholar 

  28. Gregory RT, Criss RE, Taylor HP Jr (1989) Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chem Geol 75:1–42. https://doi.org/10.1016/0009-2541(89)90019-3

    Article  Google Scholar 

  29. Gross KA, Berndt CC (2002) Biomedical application of apatites. In Kohn MJ, Rakovan J, Hughe JM (eds) Phosphates. Geochemical, geobiological, and materials importance 48: 631–672

  30. Hangari KM, Ahmad SN, Perry EC (1980) Carbon and oxygen isotope ratios in diagenetic siderite and magnetite from Upper Devonian ironstone, Wadi Shatti District, Libya. Econ Geol 75(4):538–545. https://doi.org/10.2113/gsecongeo.75.4.538

    Article  Google Scholar 

  31. Hawkins T, Smith MP, Herrington RJ, Maslennikov VV, Boyce AJ, Jeffries T, Creaser RA (2017) The geology and genesis of the iron skarns of the Turgai belt, northwestern Kazakhstan. Ore Geol Rev 85:216–246. https://doi.org/10.1016/j.oregeorev.2015.10.016

    Article  Google Scholar 

  32. Herrington R, Smith M, Maslennikov V, Belogub E, Armstrong R (2002) A short review of Palaeozoic hydrothermal magnetite iron-oxide deposits of the south and central Urals and their geological setting. In: Porter TM (Ed.) Hydrothermal iron oxide copper-gold and related deposits: a global perspective 2. PGC Publishing, pp. 343–353, http://local.www.geokniga.org/books/4957

  33. Ivlev AI (2004) The Kachar iron deposit – a new look at the geological structure. In: Ivlev AI (Ed): Toporkov readings. Rudniy, pp. 62–82 (in Russian)

  34. Jahren JS, Aagaard P (1989) Compositional variations in diagenetic chlorite and illite, and relationships with formation-water chemistry. Clay Miner 2:157–170. https://doi.org/10.1180/claymin.1989.024.2.04

    Article  Google Scholar 

  35. Kaufman AJ, Hayes JM, Klein C (1990) Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim Cosmochim Acta 54:3461–3473. https://doi.org/10.1016/0016-7037(90)90298-Y

    Article  Google Scholar 

  36. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ GeoL 82:1898–1911. https://doi.org/10.2113/gsecongeo.82.7.1898

  37. Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491

    Article  Google Scholar 

  38. Kiyokawa S, Ueshiba T (2015) Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan. Sediment Geol 319:98–113. https://doi.org/10.1016/j.sedgeo.2015.01.010

    Article  Google Scholar 

  39. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38. https://doi.org/10.1016/j.gca.2015.08.010

    Article  Google Scholar 

  40. Koglin N, Frimmel HF, Lawrie Minter WE, Bratz H (2010) Trace-element characteristics of different pyrite types in Mesoarchean to Paleoproterozoic placer deposits. Mineral Deposita 45:259–280. https://doi.org/10.1007/s00126-009-0272-0

    Article  Google Scholar 

  41. Kossovskaya AG, Petrova VV, Shutov VD (1982) The mineral associations of palagonitization of oceanic basalts and problems of extraction of ore components. Lithol Miner Resour 3:10–31

    Google Scholar 

  42. Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358

    Article  Google Scholar 

  43. Laurila T, Hannington M, Leybourne M, Peterson S, Devey CW, Garbe-Schoenberg D (2015) New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea. Geochem Geophys Geosyst 16:4449–4478. https://doi.org/10.1002/2015GC006010

    Article  Google Scholar 

  44. Lu JF, Tsai CJ (2015) Reduction kinetics of hematite to magnetite under hydrothermal treatments. RSC Adv 22:17236–17244. https://doi.org/10.1039/c4ra12389a

    Article  Google Scholar 

  45. Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Econ Geol 104:1111–1141

    Article  Google Scholar 

  46. Maslennikov VV, Ayupova NR, Herrington RJ, Danyushevskiy LV, Large RR (2012) Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals. Ore Geol Rev 47:5–41. https://doi.org/10.1016/j.oregeorev.2012.03.008

    Article  Google Scholar 

  47. Maynard JB (1983) Geochemistry of sedimentary ore deposits. Springer-Verlag, New York

    Book  Google Scholar 

  48. McClay KR, Ellis PG (1983) Deformation and recrystallisation of pyrite. Mineral Mag 47:527–538. https://doi.org/10.1180/minmag.1983.047.345.14

    Article  Google Scholar 

  49. Moncure GK, Lahann RW, Siebert RV (1984) Origin of secondary porosity and cement distribution in a sandstone/shale sequence from the Frio Formation (Oligocene) / In: Clastic diagenesis (ed. D.A. Mc. Donald and R.C. Surdam). Mem Am Assoc Petrol Geol 37:151–161

    Google Scholar 

  50. Morad S, Aldahan AA (1987) Diagenetic chloritization of feldspars in sandstones. Sediment Geol 51:155–164. https://doi.org/10.1016/0037-0738(87)90046-7

    Article  Google Scholar 

  51. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Developments in sedimentology. Elsevier, Amsterdam

    Google Scholar 

  52. Mucke A, Cabral RA (2005) Redox and nonredox reactions of magnetite and hematite in rocks. Chem Erde 65:271–278. https://doi.org/10.1016/j.chemer.2005.01.002

    Article  Google Scholar 

  53. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 16:1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013

    Article  Google Scholar 

  54. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HJ (ed) Geochemistry of Hydrothermal Ore Deposits, 2nd edn. Wiley, New York, pp 509–567

    Google Scholar 

  55. Orlov VP (ed) (2007) Iron ore base of Russia. Geoinformmark, Moscow (in Russian)

    Google Scholar 

  56. Ovchinnikov LN, Dymkin AM (Ed) (1987) Iron ore formation of Transuralian zone (northern part of the Turgai trough). USC of Academy of Sciences USSR (in Russian)

  57. Petrova VV, Voronin BI, Serebrennikova ND (1980) Features of the underwater change of the mafic glass in the core of 160 voyage of Glomar Challenger. Lithol Miner Resour 2:133–142 (in Russian)

    Google Scholar 

  58. Pirajno F (2009) Submarine hydrothermal mineral systems. In: Pirajno F (ed.): Hydrothermal processes and mineral systems, Springer, 1250 p.

  59. Poltavets YA (2009) The Tyumen-Kustanay trough: features of magmatism and metallogeny. Lithosfera 3:17–32 (in Russian)

    Google Scholar 

  60. Porotov GS (1981) Connection of magnetite deposits of the Turgai trough with paleovolcanic structures. In: Geology and genesis of iron ore deposits. USSR Academy of Sciences, Sverdlovsk, pp. 25–34 (in Russian)

  61. Posth NR, Konhauser KO, Kappler A (2013) Microbiological processes in banded iron formation deposition. Sedimentology 60:1733–1754. https://doi.org/10.1111/sed.12051

    Article  Google Scholar 

  62. Puchkov VN (2013) Structural stages and evolution of the Urals. Mineral Petrol 107(1):3–37. https://doi.org/10.1007/s00710-012-0263-1

    Article  Google Scholar 

  63. Qiang S, Zhang B, Yong L, Chang PZ, Xue YY, Qiao SZ, Wu BY, He CN (2009) Characteristics and trace element geochemistry of pyrite from the Songhu iron deposit, Nilek County, Xinjiang, China. Acta Petrol Sin 25(6):1456–1464

    Google Scholar 

  64. Ramdohr P (1969) Ore minerals and their intergrowhs. (Monographs in Earth Science). Oxford

  65. Ramseyer K, Boles JR, Lichtner PC (1992) Mechanism of plagioclase albitization. J Sediment Petrol 62:349–356

    Google Scholar 

  66. Reed MH (1983) Seawater-basalt reaction and the origin of greenstones and related ore deposits. Econ Geol 78(3):466–485

    Article  Google Scholar 

  67. Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and IOCG systems? Econ Geol 111:743–761. https://doi.org/10.2113/econgeo.111.3.743

    Article  Google Scholar 

  68. Roberts AP (2015) Magnetic mineral diagenesis. Earth Sci Rev 151:1–47. https://doi.org/10.1016/j.earscirev.2015.09.010

    Article  Google Scholar 

  69. Rudnitsky VF, Aleshin KB, Kuznetsov AZ, Ivanchenko VS (2013) Structure of magnetite lodes at the Estyunino iron deposit in the central Urals. Geol Ore Dep 55(6):467–481

    Article  Google Scholar 

  70. Seyfried WE, Bishoff JL (1979) Low temperature basalt alteration by seawater: an experimental study at 70 and 150 °C. Geochim Cosmochim Acta 43:1937–1947

    Article  Google Scholar 

  71. Shimazaki H (1985) Regional variation of isotopic composition of hydrothermal ore sulfur in Japan. J Fac Sci Univ Tokyo, Sect, II 21:81–100

    Google Scholar 

  72. Shimazaki H, Shimizu M, Takanori N (1986) Carbon and oxygen calcites from Japanese isotopes of skarn deposits. Geochem J 20:297–310

    Article  Google Scholar 

  73. Staudigel H, Hart S (1983) Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget. Geochim Cosmochim Acta 47:337–350. https://doi.org/10.1016/0016-7037(83)90257-0

    Article  Google Scholar 

  74. Sturesson U (2003) Lower Palaeozoic iron oolites and volcanism from a Baltoscandian perspective. Sediment Geol 159(3):241–256. https://doi.org/10.1016/S0037-0738(02)00330-5

    Article  Google Scholar 

  75. Taitel-Goldman N, Singer A (2002) Metastable Si-Fe phases in hydrothermal sediments of Atlantis II Deep, Red Sea. Clay Miner 37:235–248. https://doi.org/10.1180/0009855023720030

    Article  Google Scholar 

  76. Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Mineral Geochem 16(1):445–489

    Google Scholar 

  77. Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Article  Google Scholar 

  78. Velde B, Medhioub M (1988) Approach to chemical equilibrium in diagenetic chlorites. Contrib. Mineral Petrol 98:122–127

    Article  Google Scholar 

  79. Walker JCG (1984) Suboxic diagenesis in banded iron formations. Nature 309:340–342

    Article  Google Scholar 

  80. Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013–5020. https://doi.org/10.1016/S0016-7037(96)00299-2

    Article  Google Scholar 

  81. Zhang Y, Shao Y, Chen H, Liu Z, Li D (2017) A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: evidence from sulfide geochemistry and sulfur isotopes. Ore Geol Rev 88:534–549. https://doi.org/10.1016/j.oregeorev.2016.08.002

    Article  Google Scholar 

  82. Zhao HJ, Xie GQ, Wei KT, Ke YF (2012) Mineral compositions and fluid evolution of the Tonglushan skarn Cu–Fe deposit, SE Hubei, east-central China. Int Geol Rev 54:737–764. https://doi.org/10.1080/00206814.2011.569418

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ivan Blinov (IMin) for SEM study of minerals and Irina Gottman (IGG UB RAS) for EPMA studies of magnetite. The authors thank Dr. Craig Johnson (USGS) and Dr. Martin Reich (University of Chile) for their valuable suggestions and Associate Editor Karen Kelley for recommendations and language adaptation, which improved this paper. Careful reading by Georges Beaudoin, Editor-in-Chief of Mineralium Deposita, is also greatly appreciated.

Funding

This work was supported by State Contract of the IMin (no. AAAA-A19-119061790049-3). SPH is currently funded by Geological Survey Ireland/DCCAE Postdoctoral Fellowship Program, No. 2016-PD-003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuriya R. Ayupova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: K. Kelley

Electronic supplementary material

ESM 1

(DOCX 19 kb)

ESM 2

(XLSX 30 kb)

ESM 3

(DOCX 23 kb)

ESM 4

(DOCX 20 kb)

ESM 5

(XLSX 15 kb)

ESM 6

(XLSX 26 kb)

ESM 7

(XLSX 22 kb)

ESM 8

(DOCX 18 kb)

ESM 9

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayupova, N.R., Novoselov, K.A., Maslennikov, V.V. et al. The formation of magnetite ores of the Glubochenskoe deposit, Turgai iron belt, Russia: new structural, mineralogical, geochemical, and isotopic constraints. Miner Deposita 56, 103–123 (2021). https://doi.org/10.1007/s00126-020-00994-6

Download citation

Keywords

  • Iron ores
  • Hematite
  • Magnetite
  • Gangue minerals
  • LA-ICP-MS
  • Carbon and oxygen isotopes
  • Transuralian Megazone