Chemical composition of tourmaline in orogenic gold deposits

Abstract

Tourmaline from 18 orogenic gold deposits and districts, hosted in varied country rocks and metamorphic facies, was investigated by EPMA (electron probe micro-analyzer) and LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) to establish discriminant geochemical features to constrain indicator mineral surveys for gold exploration. Such tourmaline most commonly belongs to the alkali group, with a dravitic composition. LA-ICP-MS results were investigated with binary plots and PLS-DA (partial least square-discriminant analysis). PLS-DA suggests that the major element composition of tourmaline from orogenic gold deposits is buffered by the hydrothermal fluid, whereas trace element composition is strongly controlled by the composition and the metamorphic facies of the country rocks. Contents of Sn, Ga, Ti, rare earth elements (REE), Zr, Hf, Nb, Ta, Th, and U vary with the metamorphic facies of the country rocks. Tourmaline from orogenic gold deposits has high contents of Sr, V, and Ni and low Li, Be, Ga, Sn, Nb, Ta, U, and Th compared to tourmaline from other deposit types and geological environments. Binary plots such as Sr/Li vs. V/Sn, Sr/Sn vs. V/Nb, Sr/Sn vs. Ni/Nb, and Sr/Sn vs. V/Be, as well as PLS-DA, discriminate tourmaline from orogenic gold deposits from that of other settings. Binary plots highlight a transitional variation in the trace element composition of tourmaline from metamorphic, to magmatic-hydrothermal, to magmatic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aitchison J (1986) The statistical analysis of compositional data. Monographs on Statistics and Applied Probability, London

    Google Scholar 

  2. Anglin CD, Jonasson IR, Franklin J (1996) Sm-Nd dating of scheelite and tourmaline: implications for the genesis of Archean gold deposits, Val d'Or, Canada. Econ Geol 91:1372–1382

    Google Scholar 

  3. Bačik P, Uher P, Ertl A, Jonsson E, Nysten P, Kanicky V, Vaculovic T (2012) Zoned REE-enriched dravite from a granitic pegmatite in Forshammar Bergslagen province, Sweden; an EMPA, XRD and LA-ICP-MS study. Can Min 50:825–841

    Google Scholar 

  4. Baksheev IA, Yu P, Zaraisky GP, Chitalin AF, Yapaskurt VO, Nikolaev YN, Tikhomirov PL, Nagornaya EV, Rogacheva L, Gorelikova NV, Kononov OV (2012) Tourmaline as a prospecting guide for the porphyry-style deposits. Eur J Min 24:957–979

    Google Scholar 

  5. Beaudoin G, Pitre D (2005) Stable isotope geochemistry of the Archean Val-d‘Or (Canada) orogenic gold vein field. Mineral Deposita 40:59–75

    Google Scholar 

  6. Beaudoin G, Chiaradia M (2016) Fluid mixing in orogenic gold deposits; evidence from the H-O-Sr isotope composition of the Val-d'Or vein field (Abitibi, Canada). Chem Geol 437:7–18

  7. Belousova EA, Griffin WL, O'Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Google Scholar 

  8. Berryman EJ, Kutzschbach M, Trumbull RB, Meixner A, Van Hinsberg V, Kasemann SA, Franz G (2017) Tourmaline as a petrogenetic indicator in the Pfitsch formation, western Tauern Window, eastern Alps. Lithos 284-285:138–155

    Google Scholar 

  9. Blewett RS, Squire RJ, Miller JM, Henson PA, Champion DC (2010) Architecture and geodynamic evolution of the St Ives gold field, eastern Yilgarn Craton, Western Australia. Precambrian Res 183:275–291

    Google Scholar 

  10. Böhlke JK, Kistler RW (1986) Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California. Econ Geol 81:296–322

    Google Scholar 

  11. Chown EH, Hicks J, Phillips GN, Townend R (1982) The disseminated archaean Big Bell gold deposit, Murchison Province, Western Australia: an example of pre-metamorphic hydrothermal alteration. In: Foster RP, Balkema AA (eds) Gold '82, Rotterdam

  12. Čopjaková R, Skoda R, Vasinova Galiova M, Novak M (2013) Distributions of Y+REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Trebic pluton, Moldanubian zone, Czech Republic. J Geosci 58:113–131

    Google Scholar 

  13. Daoust C, Voicu G, Brisson H, Gauthier M (2011) Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname. J S Am Earth Sci 32:222–245

    Google Scholar 

  14. de Iorio M, Ebbels TMD, Stephens DA (2007) Statistical techniques in metabolic profilling. In: Balding DJ, Bishop MJ, Cannings C (eds) Handbook of statistical genetics, 3rd edn. Wiley, Chichester, pp 347–373

    Google Scholar 

  15. De Souza S, Dubé B, McNicoll V, Dupuis C, Mercier-Langevin P, Creaser RA (2014) Fracture-controlled hydrothermal alteration at the Canadian Malartic deposit: toward a multiphase model for Archean intrusion-related low-grade bulk tonnage gold deposits. GAC-MAC conference

  16. De Souza S, Dubé B, McNicoll VJ, Dupuis C, Mercier-Langevin P, Creaser RA, Kjarsgaard IM (2015) Geology, hydrothermal alteration, and genesis of the world-class Canadian Malartic stockwork-disseminated Archean gold deposit, Abitibi, Québec. In: Dube B, Mercier-Langevin P (eds) Targeted Geoscience Initiative 4: contributions to the understanding of precambrian lode gold deposits and implications for exploration, Open file, vol 7852, pp 113–126

    Google Scholar 

  17. Deksissa DJ, Koeberl C (2004) Geochemistry, alteration, and genesis of gold mineralization in the Okote area, southern Ethiopia. Geochem J 38:307–331

    Google Scholar 

  18. Demange M, Pascal ML, Raimbault L, Armand J, Forette MC, Serment R, Touil A (2006) The Salsigne Au-As-Bi-Ag-Cu deposit, France. Econ Geol 101:199–234

    Google Scholar 

  19. Dietrich RV (1985) The tourmaline group. Van Nostrand Reinhold Company, New York

    Google Scholar 

  20. Dinel E, Fowler AD, Ayer JA, Still A, Tylee K, Barr E (2008) Lithogeochemical and stratigraphic controls on gold mineralization within the metavolcanic rocks of the Hoyle Pond mine, Timmins, Ontario. Econ Geol 103:1341–1363

    Google Scholar 

  21. Drivenes K, Larsen RB, Mueller A, Sorensen BE, Wiedenbeck M, Raanes MP (2015) Late magmatic immiscibility during batholith formation; assessment of B isotopes and trace elements in tourmaline from the Land's End Granite, SW England. Contrib Mineral Petrol 169:1–27

    Google Scholar 

  22. Dubé B, Ravenelle J-F, McNicoll V, Malo M, Nadeau L, Creaser RA, Simoneau J (2011) The world-class Roberto gold deposit, Éléonore property, James Bay area, Superior province, Québec: insights from geology and geochronology. Paper presented at the Geol Assoc Canada-Mineral Assoc Canada-Soc Economic Geologists-SGA Joint Meeting, Ottawa, May 25–27

  23. Duchoslav M, Marks MAW, Drost K, McCammon C, Marschall HR, Wenzel T, Markl G (2017) Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: the Cornubian Batholith, SW England. Ore Geol Rev 83:215–234

    Google Scholar 

  24. Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306

    Google Scholar 

  25. Dziggel A, Wulff K, Kolb J, Meyer FM (2009) Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: the Navachab gold deposit, Namibia. Miner Deposita 44:665–687

    Google Scholar 

  26. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueraz G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300

    Google Scholar 

  27. Eilu PK, Mathison CI, Groves DI, Allardyce WJ (1999) Atlas of alteration assemblages, styles and zoning in orogenic lode-gold deposits in a variety of host rock and metamorphic settings, vol 30. University of Western Australia, Geology Department and Extension Service, Perth

    Google Scholar 

  28. El Goumi N, De Souza S, Enkin RJ, Dubé B (2015) Petrophysical signature of gold mineralization and alteration assemblages at the Canadian Malartic deposit, Québec. In: Dubé B, Mercier-Langevin P (eds) Geol Survey Canada,Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Open file, vol 7852, pp 127–138

    Google Scholar 

  29. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis basic principles and applications. UMETRICS, Umeå

    Google Scholar 

  30. Ertl A, Tillmanns E, Ntaflos T, Francis C, Giester G, Körner W, Hughes JM, Lengauer C, Prem M (2008) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressuretemperature conditions of formation. Eur J Min 20:881–888

    Google Scholar 

  31. Fontaine A, Dubé B, Malo M, McNicoll V, Brisson T (2014) geology and structural characteristics of the Roberto gold deposit, Eleonore property, Superior Province, Baie James, Québec, Canada. Québec Mines 2014

  32. Fontaine A, Dubé B, Malo M, McNicoll V, Brisson T, Doucet D, Goutier J (2015) Geology of the metamorphosed Roberto gold deposit (Éléonore Mine), James Bay region, Quebec: diversity of mineralization styles in a polyphase tectonometamorphic setting. In: Dubé B, Mercier-Langevin P (eds) Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration, Open File 7852. Geol Survey Canada, pp 209–225

  33. Gadas P, Novak M, Stanek J, Filip J, Vasinova Galiova M (2012) Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites of the Moldanubian zone, Czech Republic. Can Min 50:895–912

    Google Scholar 

  34. Galbraith CG, Clarke DB, Trumbull RB, Wiedenbeck M (2009) Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza prospect, Yukon Territory, Canada. Econ Geol 104:713–731

    Google Scholar 

  35. Gallagher V, Kennan PS (1992) Tourmaline on the margin of the Leinster granite, southeastern Ireland: petrogenetic implications. Irish J Earth Sci 11:131–150

    Google Scholar 

  36. Garofalo P, Matthai S, Heinrich C (2002) Three-dimensional geometry, ore distribution and time-integrated mass transfer through the quartz-tourmaline-gold vein network of the Sigma deposit (Abitibi belt, Canada). Geofluids 2:217–232

    Google Scholar 

  37. Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26

    Google Scholar 

  38. Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume, pp 407–450

    Google Scholar 

  39. Griffin WL, Slack JF, Ramsden AR, Win TT, Ryan CG (1996) Trace elements in tourmalines from massive sulfide deposits and tourmalinites: geochemical controls and exploration applications. Econ Geol 91:657–675

    Google Scholar 

  40. Grzela D (2017) Tourmaline, scheelite, and magnetite composition from orogenic gold deposits and glacial sediments of the Val-d’Or district (Québec, Canada) Université Laval, Canada

  41. Grzela D, Beaudoin G, Bédard É (2019) Tourmaline, scheelite, and magnetite compositions from orogenic gold deposits and glacial sediments of the Val-d'Or district (Québec, Canada): applications to mineral exploration. J Geochem Explor 206:106355

    Google Scholar 

  42. Hanes R, Huot F, Clevens NR, Goutier J, Beaudoin G, Guilmette C (2017) Orogenic gold veins related to transpressional shear zones along the north-western contact of the La Grande and Opinaca subprovinces, Eeyou Istchee James Bay, Québec, Canada. Proceed 14th SGA Biennial Meeting, Québec, Canada, August 2017

  43. Harlaux M (2016) Les systèmes métallogéniques hydrothermaux à tungstène et métaux rares (Nb, Ta, Sn) dans le contexte orogénique finivarisque : exemple du Massif Central français. Université de Lorraine

  44. Harlaux M, Kouzmanov K, Gialli S, Laurent O, Marger K, Baumgartner L, Dini A, Chauvet A (2018) Magmatic-hydrothermal transition traced by in situ tourmaline analysis at the San Rafael tin deposit, Peru. Goldschmidt 2018, Boston

  45. Harlaux M, Mercadier J, Marignac C, Villeneuve J, Mouthier B, Cuney M (2019) Origin of the atypical Puy-les-Vinges W breccia pipe (Massif Central, France) constrained by trace element and boron isotopic composition of tourmaline. Ore Geol Rev 114

  46. Hazarika P, Mishra B, Pruseth KL (2015) Diverse tourmaline compositions from orogenic gold deposits in the Hutti-Maski greenstone belt, India: implications for sources of ore-forming fluids. Econ Geol 110:337–353

    Google Scholar 

  47. Hazarika P, Mishra B, Pruseth KL (2016) Scheelite, apatite, calcite and tourmaline compositions from the Late Archean Hutti orogenic gold deposit: implications for analogous two stage ore fluids. Ore Geol Rev 72:989–1003

    Google Scholar 

  48. Hazarika P, Upadhyay D, Pruseth KL (2017) Episodic tourmaline growth and re-equilibration in mica pegmatite from the Bihar mica belt, India; major and trace element variations under pegmatitic and hydrothermal conditions. Geol Mag 154:68–86

    Google Scholar 

  49. Hellingwerf RH, Gatedal K, Gallagher V, Baker JH (1994) Tourmaline in the central Swedish ore district. Mineral Deposita 29:189–205

    Google Scholar 

  50. Hellmann A (2009) The genesis of the gold deposit Hira Buddini, South India (in German). Rheinisch -Westfälischen Technischen Hochschule, Aachen

    Google Scholar 

  51. Hellmann A, Kolb J, Meyer MF (2005) Physikochemische Bedingungen während amphibolitfazieller hydrothermaler Goldmineralisation-Hira Buddinni, Indien. Eur J Min 17:54

    Google Scholar 

  52. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry Review in Mineral 33

  53. Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  54. Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks; perspectives from Namibian tourmalinites. Eur J Min 20:889–904

    Google Scholar 

  55. Henry DJ, Novak M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Google Scholar 

  56. Hong W, Cooke DR, Zhang L, Fox N, Thompson J (2017) Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: characteristics, origins, and implications for tin mineralization. Am Mineral 102:876–899

    Google Scholar 

  57. Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Comput Stat Data Anal 54:3095–3107

    Google Scholar 

  58. IAMGold (2009) Updated feasibility study—Essakane Gold project Burkina Faso

  59. Iveson AA, Webster JD, Rowe MC, Neill OK (2016) Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA. Contr Mineral Petrol 171:20

    Google Scholar 

  60. Jiang S-Y, Han F, Shen J, Palmer MR (1999) Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P.R. China. Chem Geol 157:49–67

    Google Scholar 

  61. Jiang S-Y, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia. Chem Geol 188:229–247

    Google Scholar 

  62. Jiang S-Y, Yu J-M, Lu J-J (2004) Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic–hydrothermal fluid evolution and ore genesis. Chem Geol 209:193–213

    Google Scholar 

  63. Jolliff BL, Papike JJ, Laul JC (1987) Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota. Geochim Cosmochim Acta 51:2225–2232

    Google Scholar 

  64. Joyce NJ (2016) Alteration mineralogy and pathfinder element inventory in the footprint of the McArthur River unconformity-related uranium deposit, Canada. Queen’s University, Kingston, Ontario, Canada, Depart Geological Sciences and Geological Engineering

  65. Kalliomäki H, Wagner T, Fusswinkel T, Sakellaris G (2017) Major and trace element geochemistry of tourmalines from Archean orogenic gold deposits: proxies for the origin of gold mineralizing fluids? Ore Geol Rev 91:906–927

    Google Scholar 

  66. Keller P, Roda Robles E, Pesquera Pérez A, Fontan F (1999) Chemistry, paragenesis and significance of tourmaline in pegmatites of the southern tin belt, central Namibia. Chem Geol 158:203–225

    Google Scholar 

  67. Kempe U, Belyatsky B, Krymsky R, Kremenetsky AA, Ivanov PA (2001) Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineral Deposita 36:379–392

    Google Scholar 

  68. Kerrich R (1989) Geochemical evidence on the sources of fluids and solutes for shear zone hosted mesothermal Au deposits. In: Bursnall JT (ed) Mineralization and shear zones, Geol Assoc Canada short course, vol 6, pp 129–197

    Google Scholar 

  69. Kerrich R (1993) Perspectives on genetic models for lode gold deposits. Miner Deposita 28:362–365

    Google Scholar 

  70. King RW, Kerrich R (1989) Chromian dravite associated with ultramafic-rock-hosted Archean lode gold deposits, Timmins-Porcupine district, Ontario. Can Min 27:419–426

    Google Scholar 

  71. King RW, Goode ADT, Smyth EL, Birch WD, Bosma LI (1988) Geochemical characteristics of tourmaline from Superior Province Archaean lode gold deposits; implications for source regions and processes. Geol Soc Aust 23:445–447

    Google Scholar 

  72. Kisters AFM (2005) Controls of gold-quartz vein formation during regional folding in amphibolite-facies, marble-dominated metasediments of the Navachab gold mine in the Pan-African Damara Belt, Namibia. South Afr J Geol 108:365–380

    Google Scholar 

  73. Klemme S, Marschall HR, Jacob DE, Prowatke S, Ludwig T (2011) Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. Can Min 49:165–176

    Google Scholar 

  74. Kolb J, Rogers A, Meyer FM (2005) Relative timing of deformation and two-stage gold mineralization at the Hutti mine, Dharwar Craton, India. Miner Deposita 40:156–174

    Google Scholar 

  75. Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:709–731

    Google Scholar 

  76. Koval PV, Zorina LD, Kitajev NA, Spiridonov AM, Ariunbileg S (1991) The use of tourmaline in geochemical prospecting for gold and copper mineralization. J Geochem Explor 40:349–360

    Google Scholar 

  77. Krienitz M, Trumbull R, Hellmann A, Kolb J, Meyer F, Wiedenbeck M (2008) Hydrothermal gold mineralization at the Hira Buddini gold mine, India: constraints on fluid evolution and fluid sources from boron isotopic compositions of tourmaline. Mineral Deposita 43:421–434

    Google Scholar 

  78. Krosse S (1995) Hochdrucksynthese, stabilität und eigenschaften der borsilikate dravit und kornerupin, sowie darstellung und stabilitätsverhalten eines neuen Mg-Al-borates. Ruhr-Universität Bochum

  79. Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective Economic Geology 100th Anniversary Volume. pp 561–607

  80. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899-904. J Analytical Atomic Spectrometry 11:899–904

    Google Scholar 

  81. Lottermoser BG, Plimer IR (1987) Chemical variation in tourmalines Umberatana, South Australia. Neues Jahrbuch Min Monatshefte 7:314–327

    Google Scholar 

  82. Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C (2016a) Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol Rev 72:60–85

    Google Scholar 

  83. Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016b) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408

  84. Manéglia N (2017) Indicator minerals composition in the Meliadine district and glacial sediments (Nunanut, Canada). Université Laval, Quebec City

    Google Scholar 

  85. Manéglia N, Beaudoin G, Simard M (2018) Indicator minerals of the Meliadine orogenic gold deposits, Nunavut (Canada), and application to till surveys. Geochem Explor Environ Anal 18:241–251

    Google Scholar 

  86. Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions; a robust new tool for mineral exploration. Econ Geol 111:1187–1222

    Google Scholar 

  87. Marcoux É, Lescuyer J-L (1994) Les minerais sulfo-arseniés aurifères de Salsigne, Aude, France: évolution paragénétique d'une minéralisation ardi-hercynienne syntectonique en contexte sédimentaire. Canad Miner 32:159–177

    Google Scholar 

  88. Marks MAW, Marschall HR, Schuehle P, Guth A, Wenzel T, Jacob DE, Barth M, Markl G (2013) Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): the importance of major element composition, sector zoning, and fluid or melt composition. Chem Geol 344:73–90

    Google Scholar 

  89. Marschall H, Jiang S (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Google Scholar 

  90. Martin R (2012) Syenite-hosted gold mineralization and hydrothermal alteration at the Young-Davidson deposit, Matachewan. University of Waterloo, Earth Science Dept, Canada, Ontario

    Google Scholar 

  91. McCuaig CT, Kerrich R (1998) P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453

    Google Scholar 

  92. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  93. McGoldrick KL, Squire RJ, Cas RAF, Briggs M, Tunjic J, Allen CM, Campbell IH, Hayman PC (2013) The largest Au deposits in the St Ives gold field (Yilgarn Craton, Western Australia) may be located in a major Neoarchean volcano-sedimentary depo-centre. Miner Deposita 48:861–881

    Google Scholar 

  94. Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Acta 73:7087–7109

  95. Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE; experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Google Scholar 

  96. Miller LJ, Goldfarb RJ, Snee LW, Gent CA, Kirkham RA (1995) Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay district, southeast Alaska. Econ Geol 90:343–368

    Google Scholar 

  97. Mishra B, Pal N, Sarbadhikari AB (2005) Fluid inclusion characteristics of the Uti gold deposit, Hutti-Maski greenstone belt, southern India. Ore Geol Rev 26:1–16

  98. Moritz RP, Crocket JH (1990) Mechanics of formation of the gold-bearing quartz-fuchsite vein at the Dome mine, Timmins area, Ontario. Canada J Earth Sci 27:1609–1620

    Google Scholar 

  99. Mueller AG, De Laeter JR, Groves DI (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn block, Western Australia. Econ Geol 86:780–809

    Google Scholar 

  100. Mueller AG, Campbell IH, Schiotte L, Sevigny JH, Layer PW (1996) Constraints on the age of granitoid emplacement, metamorphism, gold mineralization, and subsequent cooling of the Archean greenstone terrane at big bell, Western Australia. Econ Geol 91:896–915

    Google Scholar 

  101. Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S (2008) Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: vectors to high grade ore bodies in Archaean gold deposits? Mineral Deposita 43:363–371

    Google Scholar 

  102. Nörtemann MF-J, Mücke A, Weber K, Meinert LD (2000) Mineralogy of the Navachab skarn deposit, Namibia: an unusual Au-bearing skarn in high-grade metamorphic rocks. Commun Geol Survey Namibia 12:169–177

    Google Scholar 

  103. Orlando A, Ruggieri G, Chiarantini L, Montegrossi G, Rimondi V (2017) Experimental investigation of Biotite-rich schist reacting with B-bearing fluids at upper crustal conditions and correlated tourmaline formation. Minerals 7:155

    Google Scholar 

  104. Ota T, Kobayashi K, Katsura T, Nakamura E (2008) Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones. Contrib Mineral Petrol 155:19–32

    Google Scholar 

  105. Otto A (2007) Tektono-metamorphe kontrolle der archaischen goldmineralisation in der New Consort gold mine, Barberton Grünsteingürtel, Südafrika. Rheinisch - Westfälischen Technischen Hochschule, Germany

  106. Otto A, Dziggel A, Kisters AFM, Meyer FM (2007) The New Consort gold mine, Barberton greenstone belt, South Africa; orogenic gold mineralization in a condensed metamorphic profile. Miner Deposita 42:715–735

    Google Scholar 

  107. Phillips GN, Nooy DD (1988) High-grade metamorphic processes which influence Archaean gold deposits, with particular reference to Big Bell, Australia. J Meta Geol 6:95–114

    Google Scholar 

  108. Poulsen KH, Robert F, Dubé B (2000) geological classification of Canadian gold deposits. Geol survey Canada bulletin 540, Ottawa

  109. Proudlove DC, Hutchinson RH, Rogers DS (1988) Multiphase mineralization in concordant and discordant gold veins, Dome mine, South Porcupine, Ontario, Canada. In Keays RR, Ramsay, WRH, Groves, DI (eds) The geology of gold deposits: the perspective in 1988. Econ Geol Monogr 6:112–123

    Google Scholar 

  110. Raith JG, Riemer NS, Meisel T (2004) Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia. Contrib Mineral Petrol 147:91–109

    Google Scholar 

  111. Ravenelle J-F (2013) Amphibolite facies gold mineralization: an example from the Roberto deposit, Éléonore property, James Bay. Université Québec Institut National de la Recherche Scientifique Centre Eau Terre Environnement, Québec

    Google Scholar 

  112. Ravenelle J-F, Dubé B, Malo M, McNicoll V, Nadeau L, Simoneau J (2010) Insights on the geology of the world-class Roberto gold deposit, Éléonore property, James Bay area, Québec, Geol Survey Canada, Current Research 2010–1

  113. Reynolds DG (1965) Geology and mineralization of the Salsigne gold mine, France. Econ Geol 60:772–791

    Google Scholar 

  114. Roberts S, Palmer MR, Waller L (2006) Sm-Nd and REE characteristics of tourmaline and scheelite from the Bjorkdal gold deposit, northern Sweden: evidence of an intrusion-related gold deposit? Econ Geol 101:1415–1425

    Google Scholar 

  115. Roda E, Pesquera A, Velasco F (1995) Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. Can Min 33:835–848

    Google Scholar 

  116. Roda-Robles E, Pesquera A, Gil PP, Torres-Ruiz J, Fontan F (2004) Tourmaline from the rare-element Pinilla pegmatite, (central Iberian zone, Zamora, Spain); chemical variation and implications for pegmatitic evolution. Miner Petrol 81:249–263

    Google Scholar 

  117. Roda-Robles E, Pesquera A, Gil-Crespo PP, Torres-Ruiz J (2011) Occurrence, paragenesis and compositional evolution of tourmaline from the Tormes Dome area, central Iberian zone, Spain. Can Min 49:207–224

    Google Scholar 

  118. Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J (2012) From granite to highly evolved pegmatite; a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos 153:192–207

    Google Scholar 

  119. Roda-Robles E, Simmons W, Pesquera A, Gil-Crespo PP, Nizamoff J, Torres-Ruiz J (2015) Tourmaline as a petrogenetic monitor of the origin and evolution of the Berry-Havey pegmatite (Maine, U.S.A.). Am Mineral 100:95–109

    Google Scholar 

  120. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Google Scholar 

  121. Schneider DA, Bachtel J, Schmitt AK (2012) Zircon alteration in wall rock of Pamour and Hoyle Pond Au deposits, Abitibi greenstone belt: constraints on timescales of fluid flow from depth-profiling techniques. Econ Geol 107:1043–1072

    Google Scholar 

  122. Sciuba M, Beaudoin G, Grzela D, Makvandi S (2020) Trace element composition of scheelite in orogenic gold deposits. Miner Deposita

  123. Selway JB, Novak M, Černý P, Hawthorne FC (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. Eur J Min 11:569–584

    Google Scholar 

  124. Selway JB, Černý P, Hawthorne FC, Novak M (2000) The Tanco pegmatite at Bernic Lake, Manitoba. Can Min 38:877–891

    Google Scholar 

  125. Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, Rev mineral, vol 33, pp 559–643

    Google Scholar 

  126. Slack JF (2002) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, vol 33 Reviews in Mineralog

    Google Scholar 

  127. Slack JF, Coad PR (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Canada J Earth Sci 26:694–715

    Google Scholar 

  128. Slack JF, Trumbull R (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Google Scholar 

  129. Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541

    Google Scholar 

  130. Slack JF, Ramsden AR, Griffin WL, Win TT, French DH, Ryan CG (1999) Trace elements in tourmaline from the Kidd Creek massive sulfide deposit and vicinity, Timmins, Ontario: a proton microprobe study. In: Hannington MD, Barrie T (eds) The giant Kidd Creek volcanogenic massive sulfide deposit, Western Abitibi subprovince, Canada. Econ Geol Monog, vol 10, pp 415–430

    Google Scholar 

  131. Smith TJ, Cloke PL, Kesler SE (1984) Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario, Canada. Econ Geol 79:1265–1285

    Google Scholar 

  132. Smith EJ, Kesler SE, Van Hees EHP (1987) Relationship of fluid inclusion geochemistry to wall-rock alteration and lithogeochemical zonation at the Hollinger-McIntyre gold deposit, Porcupine district, Canada. J Geochem Explor 29:434

    Google Scholar 

  133. Steenkamp HM, Guilmette C, Wodicka N (2016) New insights into regional metamorphism of the Tehery-Wager area, southwestern Rae craton, Nunavut, Canada. Geol Assoc Canada-Min Assoc Canada, Pgm Abs

  134. Tahmasbi Z, Zal F, Khalaji AA (2017) Geochemistry and formation of tourmaline nodules in Mashhad leucogranite, Iran. Geosci J 21:341–353

    Google Scholar 

  135. Taylor BE, Slack JF (1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits: textural, chemical, and isotopic relationships. Econ Geol 79:1703–1726

    Google Scholar 

  136. Taylor RD, Goldfarb RJ, Monecke T, Fletcher IR, Cosca MA, Kelly NM (2015) Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits; new age constraints on the formation of the Grass Valley gold district, Sierra Nevada foothills province, California. Econ Geol 110:1313–1337

    Google Scholar 

  137. Thió-Henestrosa S, Martín-Fernández JA (2005) Dealing with compositional data: the freeware CoDaPack. Math Geol 37:773–793

    Google Scholar 

  138. Van Hinsberg VJ (2011) Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. Can Min 49:153–163

    Google Scholar 

  139. Van Hinsberg VJ, Schumacher JC (2007) Using estimated thermodynamic properties to model accessory phases: the case of tourmaline. J Meta Geol 25:769–779

    Google Scholar 

  140. Van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770

    Google Scholar 

  141. Van Hinsberg VJ, Schumacher JC (2011) Tourmaline as a petrogenetic indicator mineral in the Haut-Allier metamorphic suite, Massif Central, France. Can Min 49:177–194

    Google Scholar 

  142. Van Hinsberg VJ, Henry DJ, Marschall HR, Martin RF (2011) Tourmaline: an ideal indicator of its host environment. Can Min 49:1–16

    Google Scholar 

  143. Vielreicher NM, Groves DI, Fletcher IR, McNaughton NJ, Rasmussen B (2003) Hydrothermal monazite and xenotime geochronology; a new direction for precise dating of orogenic gold mineralization. SEG Newsletter 53(1):10–16

    Google Scholar 

  144. Wang Z, Chen B, Yan X (2018) Geochemistry and boron isotopic compositions of tourmaline from the Paleoproterozoic amphibolites, NE China: implications for the origin of borate deposit. Precambrian Res 326:258–271

    Google Scholar 

  145. Whitten E (1995) Open and closed compositional data in petrology. Math Geol 27:789–806

    Google Scholar 

  146. Wilkins C (1993) A post-deformational, post-peak metamorphic timing for mineralization at the Archaean Big Bell gold deposit, Western Australia. Ore Geol Rev 7:439–483

    Google Scholar 

  147. Williamson BJ, Spratt J, Adams JT, Tindle AG, Stanley CJ (2000) Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: an example from fault breccias at Roche, SW England. J Petrol 41:1439–1453

    Google Scholar 

  148. Wood PC, Burrows DR, Spooner ETC (1986) Au-quartz vein and intrusion-hosted Cu-Au-Ag-Mo mineralization, Hollinger-McIntyre mines, Timmins, Ontario; geological characteristics, structural examination, igneous and hydrothermal alteration geochemistry, and light stable isotope (hydrogen and oxygen) geochemistry. Ontario Geol Surv Misc Paper 130:115–137

    Google Scholar 

  149. Wulff K (2008) Petrography, geochemistry and stable isotope characteristics of the Navachab gold deposit, Namibia. Doctoral, Rheinisch Westfälischen Technischen Hochschule Aachen University

  150. Yang S, Jiang S, Palmer MR (2015a) Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, south Tibetan Himalaya; implication for their formation from B-rich melt to hydrothermal fluids. Chem Geol 419:102–113

    Google Scholar 

  151. Yang S, Jiang S, Zhao K, Dai B, Yang T (2015b) Tourmaline as a recorder of magmatic-hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling Batholith, South China. Contrib Mineral Petrol 170:1–21

    Google Scholar 

  152. Yavuz F, Iskenderoglu A, Jiang S (1999) Tourmaline compositions from the Salikvan porphyry Cu-Mo deposit and vicinity, northeastern Turkey. Can Min 37:1007–1023

    Google Scholar 

  153. Yavuz F, Jiang S-Y, Karakaya N, Karakaya MÇ, Yavuz R (2011) Trace-element, rare-earth element and boron isotopic compositions of tourmaline from a vein-type Pb-Zn-Cu ± U deposit, NE Turkey. Int Geol Rev 53:1–24

    Google Scholar 

  154. Zack T, Kronz A, Foley SF, Rivers T (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122

    Google Scholar 

  155. Zhang J, Lin S, Linnen R, Martin R (2014) Structural setting of the Young-Davidson syenite-hosted gold deposit in the western Cadillac-Larder Lake deformation zone, Abitibi greenstone belt, Superior Province, Ontario. Precambrian Res 248:39–59

    Google Scholar 

Download references

Acknowledgements

This research project was funded by the Natural Sciences and Engineering Research Council of Canada, Agnico Eagle Mines Ltd., and the Ministère de l’Énergie et des Ressources Naturelles du Québec. We gratefully acknowledge the people and companies that provided the samples for the study: Aurico Gold (new: Alamos Gold), Clovis Auger (InnovExplo), Caroline Daoust, S. De Souza (UQAM), Annika Dziggel (RWTH), Arnaud Fontaine (INRS-ETE), Richard Goldfarb (Goldfarb Global Gold), Goldcorp, Roman Hanes (Université Laval), Andre Hellman (RWTH), Erin Marsh (USGS), Andreas Mueller (UWA), David Pitre (Agnico Eagle), Louis Raimbault (École des Mines de Paris), Holly Steenkamp (Canada-Nunavut Geoscience Office), and Ryan Taylor (USGS). M. Choquette (Université Laval), A. Ferland (Université Laval), D. Savard (UQAC), and P. Pagé (UQAC) are thanked for the technical assistance with the EPMA, SEM, and LA-ICP-MS analyses. We gratefully thank J. Slack, M. Harlaux, R. Trumbull, and chief editor B. Lehman for their comments which improved significantly the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marjorie Sciuba or Georges Beaudoin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: B. Lehmann

Electronic supplementary material

ESM 1

(XLSX 244 kb)

ESM 2

(PDF 23054 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sciuba, M., Beaudoin, G. & Makvandi, S. Chemical composition of tourmaline in orogenic gold deposits. Miner Deposita 56, 537–560 (2021). https://doi.org/10.1007/s00126-020-00981-x

Download citation

Keywords

  • Tourmaline
  • Orogenic gold
  • Trace elements
  • Partial least square-discriminant analysis