Skip to main content
Log in

Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Mineralogical and whole rock geochemical analyses for 60 elements on 31 samples of hard ferruginous crust (canga) provide insights into the evolution of the lateritic profile developed on itabirite. Canga can form in two environments: in situ canga that typically caps itabirite and transported canga that covers country rock. Both have similar mineralogical and chemical compositions. Detrital haematite and rare quartz inherited from the itabirite and iron ore comprise the matrix of canga, cemented by goethite, minor gibbsite, and rare manganese oxides and secondary phosphates. Fe2O3 represents more than 91% of its chemical composition and the concentrations of trace elements are low, generally less than 50 ppm. A comparison of the chemical weathering of dolomitic itabirite against the quartz itabirite shows that, although weathering processes are less effective in the former, the geochemical trends of major and trace elements are similar. Negative Ce anomalies (Ce/Ce* = 0.8) and U/Th ratios lower than 1.5 suggest that saprolite formation occurred under slightly anoxic and mildly acidic conditions, allowing rare earth elements (REEs) to remain in the saprolite and also the formation of secondary Al phosphates, instead of Fe phosphates. These conditions became more aggressive during the canga formation process, resulting in further removal of trace elements from the system. The canga formation (pedogenesis) and the chemical weathering of the itabirite (saprolite formation) are independent, but interrelated processes that have been occurring since the Palaeocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albuquerque A, Angélica R, Gonçalves D, Paz S (2018) Phosphate speleothems in caves developed in iron ores and laterites of the Carajás Mineral Province (Brazil) and a new occurrence of spheniscidite. Int J Speleol 47:53–67. https://doi.org/10.5038/1827-806x.47.1.2135

    Article  Google Scholar 

  • Alkmim FF, Teixeira W (2017) The Paleoproterozoic Minerio Belt and the Quadrilátero Ferrífero. In: Heilbron M, Cordani UG, Alkmim FF (eds) São Francisco Craton. Eastern Brazil. Tectonic Genealogy of a Miniature Continent. Springer, Cham, pp 71–94

    Google Scholar 

  • Anand RR, Gilkes RJ (1984) Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. J Soil Sci 35(4):559–567

    Article  Google Scholar 

  • Babiychuk E, Kushnir S, Vasconcelos S, Dias MC, Carvalho-Filho N, Nunes GL, Dos Santos JF, Tyski L, da Silva DF, Castilho A, Fonseca VLI, Oliveira G (2017) Natural history of the narrow endemics Ipomoea cavalcantei and I. marabaensis from Amazon Canga savannahs. Sci Rep 7:7493. https://doi.org/10.1038/s41598-017-07398-z

    Article  Google Scholar 

  • Barbosa GV (1980) Superfícies de erosão no Quadrilátero Ferrífero. Minas Gerais Rev Bras Geoc 10:89–101

    Google Scholar 

  • Barbour AP (1973) Distribution of phosphorous in the iron ore deposits of Itabira, Minas Gerais, Brazil. Econ Geol 68:52–64

    Article  Google Scholar 

  • Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27

    Article  Google Scholar 

  • Berger A, Janots E, Gnos E, Frei R, Bernier F (2014) Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl Geochem 41:218–228. https://doi.org/10.1016/j.apgeochem.2013.12.013

    Article  Google Scholar 

  • Bourman RP (1993) Perennial problems in the study of laterite: a review. Aust J Earth Sci 40:387–401

    Article  Google Scholar 

  • Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795. https://doi.org/10.1016/0016-7037(90)90373-S

    Article  Google Scholar 

  • Cabral AR, Zapparoli A, Motta EGM, Kwitko-Ribeiro R (2012) Coarse-grained siderite in canga, Quadrilátero Ferrífero of Minas Gerais, Brazil: mineralogical evidence for the longevity of ferruginous duricrust. Neues Jahrb Geol Palaontol Abh 265:305–314. https://doi.org/10.1127/0077-7749/2012/0269

    Article  Google Scholar 

  • Carmo FFd, Jacobi CM (2013) Canga vegetation in the iron quadrangle, Minas Gerais: characterization and phytogeographical context Rodriguésia 64:527–541

  • Carmo IO, Vasconcelos P (2004) Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surf Process Landf 29:1303–1320. https://doi.org/10.1002/esp.1090

    Article  Google Scholar 

  • Carmo IO, Vasconcelos P (2006) 40Ar/39Ar geochronology constraints on late Miocene weathering rates in Minas Gerais, Brazil. Earth Planet Sci Lett 241:80–94

    Article  Google Scholar 

  • Cornu S, Lucas Y, Lebon E, Ambrosi JP, Luizão F, Rouiller J, Bonnay M, Neal C (1999) Evidence of titanium mobility in soil profiles, Manaus, Central Amazonia. Geoderma 91:281–295

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The Iron Oxides. Weinheim New York Basel Cambridge Tokyo

  • Costa ML, Angélica RS, Costa NC (1999) The geochemical association Au–As–B–(Cu)–Sn–W in latosol, colluvium, lateritic iron crust and gossan in Carajás, Brazil: importance for primary ore identification. J Geochem Explor 67:33–49

    Article  Google Scholar 

  • Costa ML, Araújo ES (1997) Caracterização mineralógica e geoquímica multi-elementar de crostas ferruginosas lateríticas tipo minérios de ferro em Carajás Geociências 16:55–86

  • Costa ML, Carmo MS, Behling H (2005) Mineralogia e geoquímica de sedimentos lacustres com substrato laterítico na Amazônia brasileira. Rev Bras Geoc 35:165–176

    Article  Google Scholar 

  • Costa ML, Queiroz JDS, Silva ACS, Almeida HDF, Silva GJS, Costa LCG Perfil laterítico desenvolvido sobre Formação Ferrífera Bandada (Jaspilito) em Carajás. In: 12° Simpósio de Geologia da Amazônia, Boa Vista, Roraima, 2011. Sociedade Brasileira de Geologia,

  • Dequincey O, Chabaux F, Leprun JC, Paquet H, Clauer N, Larque P (2006) Lanthanide and trace element mobilization in a lateritic toposequence: inferences from the Kaya laterite in Burkina Faso. Eur J Soil Sci 57:816–830. https://doi.org/10.1111/j.1365-2389.2005.00773.x

    Article  Google Scholar 

  • Deschamps E, Ciminelli VST, Höll WH (2005) Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res 39(20):5212–5220

    Article  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ Sci Technol 37(18):4182–4189

    Article  Google Scholar 

  • Dorr II JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U. S. Geological survey professional paper 641-a

  • Dorr IIJVN, Barbosa ALM (1963) Geology and ore deposits of the Itabira District, Minas Gerais, Brazil: U. S. Geol. Survey prof. In: Paper 341-C

    Google Scholar 

  • Dorr JVN (1964) Supergene iron ores of Minas Gerais, Brazil. Econ Geol 59:1203–1240

    Article  Google Scholar 

  • Du X, Rate AW, Gee MAM (2012) Redistribution and mobilization of titanium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chem Geol 330-331:101–115. https://doi.org/10.1016/j.chemgeo.2012.08.030

    Article  Google Scholar 

  • Eichler J (1968) O enriquecimento residual e supergênico dos itabiritos através do intemperismo. Geologia:29–40

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257. https://doi.org/10.1016/S0016-7037(98)00243-9

    Article  Google Scholar 

  • Frost RL, López A, Xi Y, Murta N, Scholz R (2013) The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3·3H2O – a vibrational spectroscopic study. J Mol Struct 1048:420–425. https://doi.org/10.1016/j.molstruc.2013.05.061

    Article  Google Scholar 

  • Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288. https://doi.org/10.1016/S0016-7037(00)01199-7

    Article  Google Scholar 

  • Gorceix H (1884) Bacias terciárias d'agua doce nos arredores de Ouro Preto. Minas Gerais, Brazil Anais da Escola de Minas de Ouro Preto 3:95–114

    Google Scholar 

  • Goyne KW, Brantley SL, Chorover J (2010) Rare earth element release from phosphate minerals in the presence of organic acids. Chem Geol 278:1–14. https://doi.org/10.1016/j.chemgeo.2010.03.011

    Article  Google Scholar 

  • Greiffo W, Herrmann K, Müller G, Strauss KW (1984) Sr-gorceixite, a weathering product in rich iron ore s from the Córrego do Feijão mine, Minas Gerais, Brazil. Contrib Mineral Petrol 87:418–419

    Article  Google Scholar 

  • Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geol Rev 76:317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004

    Article  Google Scholar 

  • Harder EC, Chamberlain RT (1915) The geology of the Central Minas Gerais, Brazil. J Geol 23:341–378 385-424

    Article  Google Scholar 

  • Hensler A-S, Hagemann SG, Brown PE, Rosière CA (2014) Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite-hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineral Deposita 49:293–311. https://doi.org/10.1007/s00126-013-0486-z

    Article  Google Scholar 

  • Hensler AS, Rosière C, Hagemann S (2017) Iron oxide mineralization at the contact zone between phyllite and itabirite of the Pau Branco deposit, Quadrilátero Ferrífero, Brazil— implications for fluid-rock interaction during iron ore formation. Econ Geol 112:941–982

    Article  Google Scholar 

  • Hesterberg D (2010) Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus. In: Singh B, Grafe M (eds) Synchrotron-Based Techniques in Soils and Sediments. Developments in Soil Science, vol 34. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  • Hsi C-kD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941. https://doi.org/10.1016/0016-7037(85)90088-2

    Article  Google Scholar 

  • Janots E, Bernier F, Brunet F, Muñoz M, Trcera N, Berger A, Lanson M (2015) Ce (III) and Ce (IV) (re) distribution and fractionation in a laterite profile from Madagascar: insights from in situ XANES spectroscopy at the Ce LIII-edge. Geochim Cosmochim Acta 153:134–148. https://doi.org/10.1016/j.gca.2015.01.009

    Article  Google Scholar 

  • Karadağ MM, Kupeli S, Aryk F, Ayhan A, Zedef V, Doyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey) Chem Erde Geochem 69:143–159

    Google Scholar 

  • Lascelles DF (2012) Banded iron formation to high-grade iron ore : a critical review of supergene enrichment models. Aust J Earth Sci 59:1105–1125. https://doi.org/10.1080/08120099.2012.739575

    Article  Google Scholar 

  • Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12. https://doi.org/10.1016/j.geoderma.2009.10.002

    Article  Google Scholar 

  • Levett A, Gagen E, Shuster J, Rintoul L, Tobin M, Vongsvivut J, Bambery K, Vasconcelos P, Southam G (2016) Evidence of biogeochemical processes in iron duricrust formation. J S Am Earth Sci 71:131–142. https://doi.org/10.1016/j.jsames.2016.06.016

    Article  Google Scholar 

  • Lima MR, Salard-Cheboldaeff M (1981) Palynologie des bassins de Gandarela et Fonseca (Eocene de L’etat de Minas Gerais, Bresil) Boletim Instituto de Geociências Universidade de São Paulo 12:33–54

  • Lindsay WL, Moreno EC (1960) Phosphate phase equilibria in soils. Soil Sci Soc Am J 24

  • Lobato LM, Ribeiro-Rodrigues LC, Zuccheti M, Noce CM, Baltazar OF, LCd S, Pinto CP (2001) Brazil's premier gold province. Part I: the tectonic, magmatic and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36

  • Lundager Madsen HE, Koch CB (2018) Kinetics of solution crystal growth of strengite, FePO 4 ,2H 2 O. J Cryst Growth 482:9–14. https://doi.org/10.1016/j.jcrysgro.2017.10.014

    Article  Google Scholar 

  • MacLean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133

    Article  Google Scholar 

  • Maizatto JR (2001) Análise bioestratigráfica, paleoecológica e sedimentológica das bacias Terciárias do Gandarela e Fonseca - Quadrilátero Ferrífero - com base nos aspectos palinológicos e sedimentares. PhD. In: Universidade Federal de Ouro Preto

    Google Scholar 

  • Margenot AJ, Singh BR, Rao IM, Sommer R (2017) Phosphorus fertilization and management in soils of Sub-Saharan Africa. In: Lal R, Stewart BA (eds) Soil Phosphorus. CRC Press, Boca Raton/Florida, pp 151–208

  • Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities. Ore Geol Rev 63:9–21. https://doi.org/10.1016/j.oregeorev.2014.04.012

    Article  Google Scholar 

  • Monteiro HS (2017) Paleoenvironmental evolution of continental landscapes through combined high-resolution geochronology and ion microprobe analysis of goethite. PhD, The University of Queensland

  • Monteiro HS, Vasconcelos PM, Farley KA, Spier CA, Mello CL (2014) (U-Th)/He geochronology of goethite and the origin and evolution of Cangas. Geochim Cosmochim Acta 131:267–289. https://doi.org/10.1016/j.gca.2014.01.036

    Article  Google Scholar 

  • Monteiro HS, Vasconcelos PMP, Farley KA (2018) A combined (U-Th)/he and cosmogenic 3He record of landscape armoring by biogeochemical iron cycling. J Geophys Res: Earth Surf 123:298–323. https://doi.org/10.1002/2017jf004282

    Article  Google Scholar 

  • Morris RC (1985) Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes - a conceptual model. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 13. Elsevier, Amsterdam, pp 73–235

    Google Scholar 

  • Murad E, Schwertmann U (1986) The influence of Al-substitution and crystallinity on room temperature Mössbauer spectrum of hematite. Clays Clay Minerals 34:1–6

    Article  Google Scholar 

  • Nahon D, Tardy Y (1992) The ferruginous laterites. In: Butt CRM, Zeegers H (eds) Regolith exploration geochemistry in tropical and subtropical terrains, vol 4. Elsevier, pp 41–55

  • Nahon DB (1986) Evolution of iron crusts in tropical landscapes. In: Colman SM, Dethier DP (eds) Rates of chemical weathering of rocks and minerals. Academic Press, Orlando, p 603

  • Nakada R, Takahashi Y, Tanimizu M (2013) Isotopic and speciation study on cerium during its solid–water distribution with implication for Ce stable isotope as a paleo-redox proxy. Geochim Cosmochim Acta 103:49–62. https://doi.org/10.1016/j.gca.2012.10.045

    Article  Google Scholar 

  • Nakada R, Tanaka M, Tanimizu M, Takahashi Y (2017) Aqueous speciation is likely to control the stable isotopic fractionation of cerium at varying pH. Geochim Cosmochim Acta 218:273–290. https://doi.org/10.1016/j.gca.2017.09.019

    Article  Google Scholar 

  • Nath BN, Bau M, Rao BR, Rao CM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61:2375–2388

    Article  Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210

    Article  Google Scholar 

  • Nriagu JO (1984) Phosphate Minerals: Their properties and general modes of occurrence. In: Nriagu JO, Moore PB (eds) Phosphate Minerals. Springer-Verlag, Berlin, pp 1–136

    Chapter  Google Scholar 

  • Nunes APL, Pinto CLL, Valadão GES, Viana PRM (2012) Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Minerals Eng 39:206–212. https://doi.org/10.1016/j.mineng.2012.06.004

    Article  Google Scholar 

  • Nunes JA, Schaefer CE, Ferreira Junior WG, Neri AV, Correa GR, Enright NJ (2015) Soil-vegetation relationships on a banded ironstone ‘island’, Carajas plateau, Brazilian eastern Amazonia. An Acad Bras Cienc 87:2097–2110. https://doi.org/10.1590/0001-376520152014-0106

    Article  Google Scholar 

  • Parker C, Wolf J, Auler A, Barton H, Senko J (2013) Microbial reducibility of Fe (III) phases associated with the genesis of iron ore caves in the Iron quadrangle, Minas Gerais, Brazil. Minerals 3:395–411. https://doi.org/10.3390/min3040395

    Article  Google Scholar 

  • Pourmand A, Dauphas N, Ireland TJ (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and post-Archean Australian shale (PAAS) abundances. Chem Geol 291:38–54. https://doi.org/10.1016/j.chemgeo.2011.08.011

    Article  Google Scholar 

  • Ramanaidou E, Nahon D, Decarreau A, Melfi A (1996) Hematite and goethite from duricrusts developed by lateritic chemical weathering of Precambrian banded iron formations, Minas Gerais, Brazil. Clays Clay Minerals 44:22–31

    Article  Google Scholar 

  • Ramanaidou ER (2009) Genesis of lateritic iron ore from banded iron-formation in the Capanema mine (Minas Gerais, Brazil). Aust J Earth Sci 56:605–620. https://doi.org/10.1080/08120090902806354

    Article  Google Scholar 

  • Ribeiro DT (2003) Enriquecimento Supergênico de Formações Ferríferas Bandadas: Estruturas de Colapso e Desordem. Ph.D., Universidade Federal do Rio de Janeiro

  • Ribeiro DT, Carvalho RM (2002) Simulation of weathered iron ore facies: integrating leaching concepts and geostatistical model. In: Armstrong M, Bettini C, Champigny N, Galli A, Remacre A (eds) Geostatistics Rio 2000. Kluwer, Dordrecht, pp 101–115

    Chapter  Google Scholar 

  • Ribeiro DT, Pires FRM, Carvalho RM (2002) Supergene iron ore and disorder. In: Iron ore 2002 Conference, Perth, Australasian Institute of Mining and Metallurgy, pp 81–90

  • Rosière CA, Spier CA, Rios FJ, Suckau VE (2008) The itabirites of the Quadrilatero Ferrifero and related high-grade iron ore deposits: an overview. In: Hagemann S, Rosière C, Gutzmer J, Beukes NJ (eds) banded iron formation-related high-grade iron ore , vol 15. Rev Econ Geol pp 223–254

  • Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64. https://doi.org/10.1016/j.earscirev.2016.04.008

    Article  Google Scholar 

  • Rott E, Steinmetz H, Metzger JW (2018) Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants. Sci Tot Environ 615:1176–1191. https://doi.org/10.1016/j.scitotenv.2017.09.223

    Article  Google Scholar 

  • Salgado AAR, Carmo FF (2015) Quadrilátero Ferrífero: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Salgado AAR, Santos LJC (eds) Vieira BC. Landscapes and Landforms of Brazil. World Geomorphological Landscapes. Springer, Dordrecht, pp 319–330. https://doi.org/10.1007/978-94-017-8023-0

    Google Scholar 

  • Sanglard JCD, Rosière CA, Santos JOS, McNaughton NJ, Fletcher IR (2014) A estrutura do segmento oeste da Serra do Curral, Quadrilátero Ferrífero, e o controle tectônico das acumulações compactas de alto teor em Fe. Geologia USP Série Científica 13:81–95. https://doi.org/10.5327/z1519-874x201400010006

    Article  Google Scholar 

  • Scatigna AV, de Oliveira Mota NF, Viana PL (2017) Buchnera carajasensis (Orobanchaceae), a new species from the canga vegetation of the Serra dos Carajás, Pará, Brazil. Kew Bull 72. https://doi.org/10.1007/s12225-017-9698-1

  • Shuster DL, Farley KA, Vasconcelos PM, Balco G, Monteiro HS, Waltenberg K, Stone JO (2012) Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth Planet Sci Lett 329-330:41–50. https://doi.org/10.1016/j.epsl.2012.02.017

    Article  Google Scholar 

  • Skirycz A, Castilho A, Chaparro C, Carvalho N, Tzotzos G, Siqueira JO (2014) Canga biodiversity, a matter of mining. Front Plant Sci 5:653. https://doi.org/10.3389/fpls.2014.00653

    Article  Google Scholar 

  • Spier CA, de Oliveira SMB, Rosière CA (2003) Geology and geochemistry of the Águas Claras and Pico Iron mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineral Deposita 38:751–774. https://doi.org/10.1007/s00126-003-0371-2

    Article  Google Scholar 

  • Spier CA, de Oliveira SMB, Sial AN, Rios FJ (2007) Geochemistry and genesis of the banded iron formations of the Caue formation, Quadrilatero Ferrifero, Minas Gerais, Brazil. Precambrian Res 152:170–206. https://doi.org/10.1016/j.precamres.2006.10.003

    Article  Google Scholar 

  • Spier CA, de Oliveira SMB, Rosière CA, Ardisson JD (2008) Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Miner Deposita 43:229–254. https://doi.org/10.1007/s00126-007-0157-z

    Article  Google Scholar 

  • Spier CA, Vasconcelos PM, Oliveira SMB (2006) 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilatero Ferrifero, Minas Gerais, Brazil. Chem Geol 234:79–104. https://doi.org/10.1016/j.chemgeo.2006.04.006

    Article  Google Scholar 

  • Stoops G (1983) SEM and light microscopic observations of minerals in bog-ores of the Belgian Campine. Geoderma 30:179–186

    Article  Google Scholar 

  • Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am J Sci 285:865–903

    Article  Google Scholar 

  • Vandenberghe RE, Verbeeck AE, De Grave E, Stiers W (1986) 57Fe Mössbauer effect study of Mn-substituted goethite and hematite. Hyperfine Interact 29:1157–1160

    Article  Google Scholar 

  • Vasconcelos PM, Carmo IO (2018) Calibrating denudation chronology through 40 Ar/ 39 Ar weathering geochronology. Earth Sci Rev 179:411–435. https://doi.org/10.1016/j.earscirev.2018.01.003

    Article  Google Scholar 

  • Vermeire ML, Cornu S, Fekiacova Z, Detienne M, Delvaux B, Cornélis JT (2016) Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem Geol 446:163–174. https://doi.org/10.1016/j.chemgeo.2016.06.008

    Article  Google Scholar 

  • Violante A, Del Gaudio S, Pigna M, Ricciardella M, Banerjee D (2007) Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron (III) precipitates. Environ Sci Technol 41:8275–8280

    Article  Google Scholar 

  • Vuillemin A, Ariztegui D, De Coninck AS, Lücke A, Mayr C, Schubert CJ (2013) Origin and significance of diagenetic concretions in sediments of Laguna Potrok Aike, southern Argentina. J Paleolimnol 50:275–291. https://doi.org/10.1007/s10933-013-9723-9

    Article  Google Scholar 

  • Weihrauch C, Opp C (2018) Ecologically relevant phosphorus pools in soils and their dynamics: the story so far. Geoderma 325:183–194. https://doi.org/10.1016/j.geoderma.2018.02.047

    Article  Google Scholar 

  • Yuan F, Cai Y, Yang S, Liu Z, Chen L, Lang Y, Wang X, Wang S (2016) Simultaneous sequestration of uranyl and arsenate at the goethite/water interface. J Radioanal Nucl Chem 311:815–831. https://doi.org/10.1007/s10967-016-5086-9

    Article  Google Scholar 

  • Yusoff ZM, Ngwenya BT, Parsons I (2013) Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem Geol 349-350:71–86. https://doi.org/10.1016/j.chemgeo.2013.04.016

    Article  Google Scholar 

  • Zhang S, Liu C, Luan Z, Peng X, Ren H, Wang J (2008) Arsenate removal from aqueous solutions using modified red mud. J Hazard Mater 152:486–492

    Article  Google Scholar 

Download references

Acknowledgments

The samples and analytical data presented in this paper were obtained by C.A.S. during his PhD studies at the Geoscience Institute of the University of São Paulo (USP). The research project was possible thanks to the grant issued by the Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (grant BEX2189/02-0) and by the financial support of Minerações Brasileiras Reunidas-MBR (now Vale). We acknowledge the contribution of Prof. Sonia M. B. de Oliveira to the initial discussions that resulted in this paper. Prof. José Domingos Ardisson is thanked for the help with the interpretation of Mössbauer spectra. We are also very grateful to Prof. Ken Collerson and Dr. David Murphy for careful reading and valuable suggestions of the first version of this manuscript. The assistance of Dr. Julius Motuzas with the micro-XRD analysis and interpretation was much appreciated. Jack Ward, Daniel Franks and Dr. John Caulfield are acknowledged for their careful editing. This paper benefited from the insightful comments of Mineralium Deposita’s Associate Editor Alexandre Cabral and of Carlos Augusto de Medeiros Filho (Vale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Spier.

Additional information

Editorial handling: A. R. Cabral

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix A.

Sample location, material type, and description (DOCX 15 kb)

Appendix B.

Analytical results for in situ and transported canga and the brick-red material (XLSX 24 kb)

Appendix C.

Correlation matrixes. C1 - Dolomitic itabirite, soft ore, and canga samples. C2 - Soft ore (saprolite) samples. C3 - In situ and transported canga (XLSX 29 kb)

Appendix D.

Mass change (%) values in the soft ore (saprolite) and canga (ferricrete) in relation to dolomitic itabirite (bedrock) relatively to TiO2 as the immobile component (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spier, C.A., Levett, A. & Rosière, C.A. Geochemistry of canga (ferricrete) and evolution of the weathering profile developed on itabirite and iron ore in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner Deposita 54, 983–1010 (2019). https://doi.org/10.1007/s00126-018-0856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0856-7

Keywords

Navigation