Skip to main content
Log in

Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The historic silver mining district of Freiberg (Germany) comprises hydrothermal vein-style mineralization of Permian and Cretaceous age. We compare sphalerite compositions with associated ore-forming fluids and constrain the behavior of critical metals such as In, Ge, and Ga in contrasting hydrothermal environments. Fluid inclusion studies reveal that the Permian veins formed due to boiling and cooling of a low-salinity (0 to 6% eq. w[NaCl]) magmatic-hydrothermal fluid at 350 to 230 °C. In contrast, Cretaceous veins formed by mixing of highly saline (17 to 24% eq. w[NaCl + CaCl2] and variable Na/(Na + Ca) ratios) brines at low temperatures (~ 120 °C). Sulfides of the Permian ore stage have a narrow range of δ34SVCDT from − 2.3 to + 0.9‰, while the sulfides of the Cretaceous stage have a large scatter and significantly more negative δ34SVCDT values (− 30.9 to − 5.5‰), supporting the different nature of the hydrothermal systems. Contrasting fluid systems and ore-forming mechanisms correspond to markedly different trace element systematics in sphalerite. Permian sphalerite is significantly enriched in In (up to 2500 μg/g In) relative to two sphalerite generations of Cretaceous veins. The latter have higher Ge (up to 2700 μg/g Ge) and Ga (up to 1000 μg/g Ga) concentrations. The observed trace element systematics of different sphalerite generations imply that In is enriched in high-temperature, low- to intermediate-salinity fluids with a significant magmatic-hydrothermal fluid component, while Ge and Ga are more concentrated in low-temperature, high-salinity crustal fluids with no obvious magmatic-hydrothermal affiliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ackerman L, Haluzová E, Creaser RA, Pašava J, Veselovský F, Breiter K, Erban V, Drábek M (2017) Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Mineral Deposita 52:651–662. https://doi.org/10.1007/s00126-016-0685-5

    Google Scholar 

  • Ashworth C, Frisch G (2017) Complexation equilibria of indium in aqueous chloride, sulfate and nitrate solutions: an electrochemical investigation. J Solut Chem 46:1928–1940. https://doi.org/10.1007/s10953-017-0675-y

    Google Scholar 

  • Bachmann K, Frenzel M, Krause J, Gutzmer J (2017) Advanced identification and quantification of In-bearing minerals by scanning electron microscope-based image analysis. Microsc Microanal 23:1–11. https://doi.org/10.1017/S1431927617000460

    Google Scholar 

  • Balabin AI, Urusov VS (1995) Recalibration of the sphalerite cosmobarometer: experimental and theoretical treatment. Geochim Cosmochim Acta 59:1401–1410. https://doi.org/10.1016/0016-7037(95)00052-2

    Google Scholar 

  • Barton PB, Toulmin P (1966) Phase relations involving sphalerite in the Fe-Zn-S system. Econ Geol 61:815–849. https://doi.org/10.2113/gsecongeo.61.5.815

    Google Scholar 

  • Bauer ME, Seifert T, Burisch M, Krause J, Richter N, Gutzmer J (2017) Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite. Mineral Deposita. https://doi.org/10.1007/s00126-017-0773-1

  • Baumann L (1958) Tektonik und Genesis der Erzlagerstätte von Freiberg (Zentralteil). Freiberger Forschungshefte C 46:1–208

    Google Scholar 

  • Baumann L (1960) Gangarchiv des Freiberger Lagerstättenbezirks (Zentralteil). Freiberger Forschungshefte C 79:202–214

    Google Scholar 

  • Baumann L (1994) The vein deposit of Freiberg, Saxony. In: Gehlen K, Klemm DD (eds) Mineral deposits of the Erzgebirge/Krusné hory (Germany/Czech Republik). Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Belissont R, Boiron M, Luais B, Cathelineau M (2014) LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac – Saint-Salvy deposit (France): insights into incorporation mechanisms and ore deposition processes. Geochim Cosmochim Acta 126:518–540. https://doi.org/10.1016/j.gca.2013.10.052

    Google Scholar 

  • Belissont R, Muñoz M, Boiron M, Luais B, Mathon O (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochim Cosmochim Acta 177:298–314. https://doi.org/10.1016/j.gca.2016.01.001

    Google Scholar 

  • Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochim Cosmochim Acta 49:2409–2422. https://doi.org/10.1016/0016-7037(85)90241-8

    Google Scholar 

  • Boiron M, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids 10:270–292. https://doi.org/10.1111/j.1468-8123.2010.00289.x

    Google Scholar 

  • Bons PD, van Milligen BP (2001) New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology 29:919–922

    Google Scholar 

  • Bons PD, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B (2014) Fluid mixing from below in unconformity-related hydrothermal ore deposits. Geology 42:1035–1038

    Google Scholar 

  • Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121. https://doi.org/10.1016/j.lithos.2011.09.022

    Google Scholar 

  • Breithaupt JFA (1849) Die Paragenesis der Mineralien: Mineralogisch, geognostisch und chemisch beleuchtet: mit besonderer Rücksicht auf Bergbau. Engelhardt, Freiberg

  • Burisch M, Walter BF, Wälle M, Markl G (2016) Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions. Chem Geol 429:44–50. https://doi.org/10.1016/j.chemgeo.2016.03.004

    Google Scholar 

  • Burisch M, Walter BF, Markl G (2017) Silicification of hydrothermal gangue minerals in Pb-Zn-Cu-fluorite-quartz-baryte veins. Can Mineral 55:501–514. https://doi.org/10.3749/canmin.1700005

    Google Scholar 

  • Burisch M, Hartmann A, Bach W, Krolop P, Krause J, Gutzmer J (2018a) Genesis of hydrothermal silver-antimony-sulfide veins of the Bräunsdorf sector as part of the classic Freiberg silver mining district, Germany. Mineral Deposita. https://doi.org/10.1007/s00126-018-0842-0

  • Burisch M, Walter BF, Gerdes A, Lanz M, Markl G (2018b) Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany. Geochim Cosmochim Acta 223:259–278. https://doi.org/10.1016/j.gca.2017.12.002

    Google Scholar 

  • Burke EAJ, Kieft C (1980) Roquesite and Cu-In-bearing sphalerite from Långban, Bergslagen, Sweden. Can Mineral 18:361–363

    Google Scholar 

  • Catchpole H, Kouzmanov K, Fontboté L, Guillong M, Heinrich CA (2011) Fluid evolution in zoned Cordilleran polymetallic veins—insights from microthermometry and LA-ICP-MS of fluid inclusions. Chem Geol 281:293–304. https://doi.org/10.1016/j.chemgeo.2010.12.016

    Google Scholar 

  • Černý P, Harris DC (1978) The Tanco pegmatite at Bernic Lake, Manitoba; XI, native elements, alloys, sulfides and sulfosalts. Can Mineral 16:625

    Google Scholar 

  • Charpentier JFW (1778) Mineralogische Geographie der Chursächsischen Lande: mit Kupfern. Crusius, Leipzig

    Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky LV, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73:4761–4791. https://doi.org/10.1016/j.gca.2009.05.045

    Google Scholar 

  • Cook NJ, Ciobanu CL, Williams T (2011) The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 108:226–228. https://doi.org/10.1016/j.hydromet.2011.04.003

    Google Scholar 

  • Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, de Jonge MD, Ryan C, Paterson D (2012) Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am Mineral 97:476–479. https://doi.org/10.2138/am.2012.4042

    Google Scholar 

  • Di Benedetto F, Bernardini GP, Costagliola P, Plant D, Vaughan DJ (2005) Compositional zoning in sphalerite crystals. Am Mineral 90:1384–1392. https://doi.org/10.2138/am.2005.1754

    Google Scholar 

  • Diamond LW (1990) Fluid inclusion evidence for PVTX evolution of hydrothermal solutions in late-Alpine gold-quartz veins at Brusson, Val d’Ayas, northwest Italian Alps. Am J Sci 290:912–958

    Google Scholar 

  • Diamond LW (2001) Review of the systematics of CO2–H2O fluid inclusions. Lithos 55:69–99. https://doi.org/10.1016/S0024-4937(00)00039-6

    Google Scholar 

  • Diamond LW (2003) Systematics of H2O inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation, vol 32. Mineralogical Association of Canada, Short Course, pp 55–78

  • Dong G, Morrison G, Jaireth S (1995) Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ Geol 90:1841–1856. https://doi.org/10.2113/gsecongeo.90.6.1841

    Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901. https://doi.org/10.1016/j.gca.2006.01.033

    Google Scholar 

  • EU Commission (2014) Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials, Brussels

  • Evans BW, Guggenheim SJ (1988) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas), pp 225–294

    Google Scholar 

  • Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84:310–320

    Google Scholar 

  • Feist-Burkhardt S, Götz AE, Szulc J, Borkhataria R, Geluk M, Haas J, Hornung J, Jordan P, Kempf O, Michalí-k J, Nawrocki J, Reinhardt L, Ricken W, Röhling H, Rüffer T, Török Á, Zühlke R (2008) Triassic. In: McCann T (ed) The geology of Central Europe, vol 2. Geological Society of London, pp 749–821

  • Förster H, Rhede D (2006) The Be-Ta-rich granite of Seiffen (eastern Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of Variscan Li-F granites of A-type affinity. Neues Jahrb Mineral Abh 182:307–321

    Google Scholar 

  • Förster H, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia – from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 287–308

    Google Scholar 

  • Förster H, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645. https://doi.org/10.1093/petroj/40.11.1613

    Google Scholar 

  • Förster H, Gottesmann B, Tischendorf G, Siebel W, Rhede D, Seltmann R, Wasternack J (2007) Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. Neues Jahrb Mineral Abh 183:123–147. https://doi.org/10.1127/0077-7757/2007/0064

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond, Spec Publ 179:35–61. https://doi.org/10.1144/GSL.SP.2000.179.01.05

    Google Scholar 

  • Frenzel M, Ketris MP, Gutzmer J (2014) On the geological availability of germanium. Mineral Deposita 49:471–486. https://doi.org/10.1007/s00126-013-0506-z

    Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016a) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017

    Google Scholar 

  • Frenzel M, Ketris MP, Seifert T, Gutzmer J (2016b) On the current and future availability of gallium. Resour Policy 47:38–50. https://doi.org/10.1016/j.resourpol.2015.11.005

    Google Scholar 

  • Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G (2013) Fluid mixing forms basement-hosted Pb-Zn deposits: insight from metal and halogen geochemistry of individual fluid inclusions. Geology 41:679–682

    Google Scholar 

  • Gehrig M (1980) Phasengleichgewichte und pVT-Daten ternärer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550 °C. PhD thesis, Universität Karlsruhe

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals: SEPM short course notes, 31

  • Götze J, Pan Y, Stevens-Kalceff M, Kempe U, Müller A (2015) Origin and significance of the yellow cathodoluminescence (CL) of quartz. Am Mineral 100:1469–1482. https://doi.org/10.2138/am-2015-5072

    Google Scholar 

  • Haubrich F, Tichomirowa M (2002) Sulfur and oxygen isotope geochemistry of acid mine drainage—the polymetallic sulfide deposit “Himmelfahrt Fundgrube” in Freiberg (Germany). Isot Environ Health Stud 38:121–138. https://doi.org/10.1080/10256010208033319

    Google Scholar 

  • Hedenquist JW, Henley RW (1985a) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: their origin, associated breccias, and relation to precious metal mineralization. Econ Geol 80:1640–1668. https://doi.org/10.2113/gsecongeo.80.6.1640

    Google Scholar 

  • Hedenquist JW, Henley RW (1985b) The importance of CO2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406

    Google Scholar 

  • Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102:73–99. https://doi.org/10.1007/s00531-012-0791-2

    Google Scholar 

  • Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—a review. Ore Geol Rev 30:145–180. https://doi.org/10.1016/j.oregeorev.2005.07.034

    Google Scholar 

  • Janetschke N, Wilmsen M (2014) Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian-Turonian of Saxony, Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG) 165:179–207. https://doi.org/10.1127/1860-1804/2013/0036

    Google Scholar 

  • Jenner FE (2017) Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat Geosci 10:524–529

    Google Scholar 

  • Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Miner Petrol 39:211–229. https://doi.org/10.1007/BF01163036

    Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286. https://doi.org/10.1016/j.chemgeo.2003.11.013

    Google Scholar 

  • Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineral Deposita 39:646–669. https://doi.org/10.1007/s00126-004-0435-y

    Google Scholar 

  • Kieft K, Damman AH (1990) Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, west Bergslagen, Central Sweden. Mineral Mag 54:109–112

    Google Scholar 

  • Klemm W (1994) Chemical evolution of hydrothermal solutions during Variscan and post-Variscan mineralization in the Erzgebirge, Germany. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens: focussed on the Erzgebirge and comparable metallogenic settings. Czech Geological Survey, Prague, pp 150–158

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes 1:1–39

    Google Scholar 

  • Kroner U, Görz I (2010) Variscan assembling of the allochthonous domain of the Saxo-Thuringian zone—a tectonic model. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 271–286

    Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329. https://doi.org/10.1016/j.gr.2013.03.001

    Google Scholar 

  • Kröner A, Willner PA (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20. https://doi.org/10.1007/s004100050401

    Google Scholar 

  • Kröner A, Willner AP, Hegner E, Frischbutter A, Hofmann J, Bergner R (1995) Latest precambrian (Cadomian) zircon ages, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundsch 84:437–456. https://doi.org/10.1007/BF00284512

    Google Scholar 

  • Kroner U, Romer RL, Linnemann U (2010) The Saxo-Thuringian zone of the Variscan Orogen as part of Pangea. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 3–16

    Google Scholar 

  • Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191. https://doi.org/10.1007/s00269-003-0306-6

    Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904. https://doi.org/10.1039/JA9961100899

    Google Scholar 

  • Lüders V (2017) Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives. Mineral Deposita 52:663–673. https://doi.org/10.1007/s00126-016-0694-4

    Google Scholar 

  • Luthardt L, Rößler R (2017) Fossil forest reveals sunspot activity in the early Permian. Geology 45:279–282. https://doi.org/10.1130/G38669.1

    Google Scholar 

  • Luthardt L, Hofmann M, Linnemann U, Gerdes A, Marko L, Rößler R (2018) A new U–Pb zircon age and a volcanogenic model for the early Permian Chemnitz fossil forest. Int J Earth Sci 107:2465–2489. https://doi.org/10.1007/s00531-018-1608-8

    Google Scholar 

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in western Europe. Tectonophysics 196:309–337. https://doi.org/10.1016/0040-1951(91)90328-P

    Google Scholar 

  • Mitchell J, Halliday AN (1976) Extent of Triassic-Jurassic hydrothermal ore deposits on the North Atlantic margins. Trans Inst Min Metall B85:159–161

    Google Scholar 

  • Möller P, Dulski P (1993) Germanium and gallium distribution in sphalerite. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits: a case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Moncada D, Baker D, Bodnar RJ (2017) Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geol Rev 89:143–170. https://doi.org/10.1016/j.oregeorev.2017.05.024

    Google Scholar 

  • Monecke T, Petersen S, Hannington MD (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ Geol 109:2079–2101. https://doi.org/10.2113/econgeo.109.8.2079

    Google Scholar 

  • Moritz R (2006) Fluid salinities obtained by infrared microthermometry of opaque minerals: implications for ore deposit modeling—a note of caution. J Geochem Explor 89:284–287. https://doi.org/10.1016/j.gexplo.2005.11.068

    Google Scholar 

  • Müller CH (1850) Die Erzlagerstätten nördlich und nordwestlich von Freiberg. In: von Cotta B (ed) Gangstudien oder Beiträge zur Kenntniss der Erzgänge. Mit zehn Tafeln Abbildungen und einem Holzschnitt, vol 1. J. G. Engelhardt, Freiberg, pp 101–304

  • Müller CH (1901) Die Erzgänge des Freiberger Bergrevieres. In: Credner H (ed) Erläuterungen zur geologischen Specialkarte des Königreiches Sachsen. Verlag W. Engelmann, Leipzig, pp 1–350

    Google Scholar 

  • Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243. https://doi.org/10.1016/j.oregeorev.2013.01.010

    Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222. https://doi.org/10.1016/j.gr.2009.08.001

    Google Scholar 

  • Nasdala L, Götze J, Pidgeon TR, Kempe U, Seifert T (1998) Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306. https://doi.org/10.1007/s004100050423

    Google Scholar 

  • Oftedal IW (1941) Untersuchungen über die Nebenbestandteile von Erzmineralien norwegischer zinkblende-führender Vorkommen, vol 8. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, Mat.-naturv.Kl.no.8

  • Ohta E (1989) Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Mining Geol 39:355–372

    Google Scholar 

  • Osbahr I, Krause J, Bachmann K, Gutzmer J (2015) Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21:1080–1095. https://doi.org/10.1017/S1431927615000719

    Google Scholar 

  • Ostendorf J, Henjes-Kunst F, Seifert T, Gutzmer J (2018) Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes. Mineral Deposita. https://doi.org/10.1007/s00126-018-0841-1

  • Pattrick RAD, Dorling M, Polya DA (1993) TEM study of indium- and copper-bearing growth-banded sphalerite. Can Mineral 31:105–117

    Google Scholar 

  • Pattrick RAD, Mosselmans JFW, Charnock JM (1998) An X-ray absorption study of doped sphalerites. Eur J Mineral 10:239–250

    Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x

    Google Scholar 

  • Pilot J, Legierski J, Rösler HJ (1970) Pb- und S-Isotopen-Untersuchungen an Freiberger und anderen Erzlagerstätten. Geologie 19:41–55

    Google Scholar 

  • Reich F, Richter T (1863a) Ueber das Indium. J Prakt Chem 90:172–176. https://doi.org/10.1002/prac.18630900122

    Google Scholar 

  • Reich F, Richter T (1863b) Vorläufige Notiz über ein neues Metall. J Prakt Chem 89:441–442. https://doi.org/10.1002/prac.18630890156

    Google Scholar 

  • Reich F, Richter T (1864) Ueber das Indium (Fortsetzung). J Prakt Chem 92:480–485. https://doi.org/10.1002/prac.18640920180

    Google Scholar 

  • Repstock A, Breitkreuz C, Lapp M, Schulz B (2017) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization. Int J Earth Sci 107:1485–1513. https://doi.org/10.1007/s00531-017-1554-x

    Google Scholar 

  • Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Mineral Deposita 42:337–359. https://doi.org/10.1007/s00126-006-0114-2

    Google Scholar 

  • Rösler HJ, Kühne R (1970) Regularities in the hydrothermal change of wall-rocks of some Erzgebirge deposits and their genetic significance. In: Pouba Z, Štemprok M (eds) Problems of hydrothermal ore deposition: the origin, evolution and control of ore-forming fluids. Symposium organized by the International Association on the Genesis of Ore Deposits. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, pp 304–311

  • Rösler HJ, Pilot J, Gebhardt R (1966) Schwefel-Isotopenuntersuchungen an Magmatiten und postmagmatischen Lagerstätten des Erzgebirges und Thüringens. Bergakademie 18:266–272

    Google Scholar 

  • Ross CS, Kerr PF (1930) Dickite, a kaolin mineral. Am Mineral 15:34–39

    Google Scholar 

  • Rosso KM, Bodnar RJ (1995) Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochim Cosmochim Acta 59:3961–3975. https://doi.org/10.1016/0016-7037(95)94441-H

    Google Scholar 

  • Sander MV, Black JE (1988) Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies. Econ Geol 83:1052–1060. https://doi.org/10.2113/gsecongeo.83.5.1052

    Google Scholar 

  • Schneider JW, Romer RL (2010) The Late Variscan molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizbart, Stuttgart, pp 323–346

    Google Scholar 

  • Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Deutsche Stratigraphische Kommission (ed) Stratigraphie von Deutschland X: Teil I: Innervariscische Becken. Schriftenr. Dt. Ges. Geowiss., Heft 61, Hannover, pp 530–588

  • Schorr S, Wagner G (2005) Structure and phase relations of the Zn2x(CuIn)1−xS2 solid solution series. J Alloys Compd 396:202–207. https://doi.org/10.1016/j.jallcom.2004.12.018

    Google Scholar 

  • Schrage I (1962) Schwefelisotopenuntersuchungen an einigen Lagerstättenbezirken: unter besonderer Berücksichtigung der kiesig-blendigen Bleierzformation der Erzlagerstätte von Freiberg. Freiberger Forschungshefte C 143:1–107

    Google Scholar 

  • Schroll E (1954) Ein Beitrag zur geochemischen Analyse ostalpiner Blei-Zink-Erze. Mitt Österr Miner Ges Sonderbd 3:1–85

    Google Scholar 

  • Schroll E (1955) Über das Vorkommen einiger Spurenmetalle in Blei-Zink-Erzen der ostalpinen Metallprovinz. Tscher Miner Petrogr 5:183–208

    Google Scholar 

  • Schwinn G, Wagner T, Baatartsogt B, Markl G (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982. https://doi.org/10.1016/j.gca.2005.10.022

    Google Scholar 

  • Sebastian U (2013) Die Geologie des Erzgebirges. Springer

  • Seifert T (2008) Metallogeny and petrogenesis of lampophyres in the mid-European Variscides: post-collosional magmatism and its relationship to Late-Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press, Rotterdam

    Google Scholar 

  • Seifert T, Kempe U (1994) Sn-W-Lagerstätten und spätveriszische Magmatite des Erzgebirges. Beih Z Eur J Mineral 6:127–172

    Google Scholar 

  • Seifert T, Pavlova GG (2016) New 40Ar/39Ar ages of Sn- and W-polymetallic mineralization in the Erzgebirge / Krušné hory (DE, CZ). Goldschmidt Abstracts

  • Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28:1–31. https://doi.org/10.1016/j.oregeorev.2005.04.005

    Google Scholar 

  • Seward TM, Henderson CMB, Charnock JM (2000) Indium(III) chloride complexing and solvation in hydrothermal solutions to 350°C: an EXAFS study. Chem Geol 167:117–127. https://doi.org/10.1016/S0009-2541(99)00204-1

    Google Scholar 

  • Shaw DM (1957) The geochemistry of gallium, indium, thallium—a review. Phys Chem Earth 2:164–211. https://doi.org/10.1016/0079-1946(57)90009-5

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie & Son Limited, Glasgow

    Google Scholar 

  • Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard IM (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28:123–145. https://doi.org/10.1016/j.oregeorev.2003.03.001

    Google Scholar 

  • Sośnicka M, Lüders V (2018) Super-deep, TSR-controlled Phanerozoic MVT type Zn-Pb deposits hosted by Zechstein-2 gas reservoir carbonate (Ca2), Lower Saxony Basin, Germany. Chem Geol. https://doi.org/10.1016/j.chemgeo.2018.04.025

  • Staude S, Bons PD, Markl G (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: an example from SW Germany. Earth Planet Sci Lett 286:387–395. https://doi.org/10.1016/j.epsl.2009.07.012

    Google Scholar 

  • Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 75:21–40. https://doi.org/10.1016/j.gca.2010.10.002

    Google Scholar 

  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HokieFlincs_H2O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput Geosci 49:334–337. https://doi.org/10.1016/j.cageo.2012.01.022

    Google Scholar 

  • Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges. Freiberger Forschungshefte C 370:1–85

    Google Scholar 

  • Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkondatierungen zu Bestimmung des Intrusionsalters des Niederbobritzschers Granites. Terra Nostra 97:183–184

    Google Scholar 

  • Tichomirowa M, Berger H, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Zircon ages of high-grade gneisses in the eastern Erzgebirge (central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332. https://doi.org/10.1016/S0024-4937(00)00066-9

    Google Scholar 

  • Tichomirowa M, Sergeev S, Berger H, Leonhardt D (2012) Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib Mineral Petrol 164:375–396. https://doi.org/10.1007/s00410-012-0742-8

    Google Scholar 

  • Tikhomirova M, Belyatski BV, Berger H, Koch EA (1995) Evidence of Variscan metamorphism in the eastern Erzgebirge. Terra Nostra 7:133–136

    Google Scholar 

  • Trinkler M, Monecke T, Thomas R (2005) Constraints on the genesis of yellow fluorite in hydrothermal barite-fluorite veins of the Erzgebirge, eastern Germany: evidence from optical absorption spectroscopy, rare-earth-element data, and fluid-inclusion investigations. Can Mineral 43:883–898. https://doi.org/10.2113/gscanmin.43.3.883

    Google Scholar 

  • Van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R, vol 122. Springer, Berlin

    Google Scholar 

  • Ventura B, Lisker F (2003) Long-term landscape evolution of the northeastern margin of the Bohemian Massif: apatite fission-track data from the Erzgebirge (Germany). Int J Earth Sci 92:691–700. https://doi.org/10.1007/s00531-003-0344-9

    Google Scholar 

  • Voigt T (2009) Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken. Z Geol Wiss 37:15–39

    Google Scholar 

  • von Cotta B (ed) (1850) Gangstudien oder Beiträge zur Kenntniss der Erzgänge. Mit zehn Tafeln Abbildungen und einem Holzschnitt, vol 1. J. G. Engelhardt, Freiberg

    Google Scholar 

  • von Cotta B (1861) Die Lehre von den Erzlagerstätten, 2., verb. u. verm. Aufl. Engelhardt, Freiberg

  • von Quadt A, Günther D (1999) Evolution of Cambrian eclogitic rocks in the Erzgebirge: a conventional and LA-ICP-MS U-Pb zircon and Sm-Nd study. Terra Nostra 99:164

    Google Scholar 

  • von Seckendorff V, Timmerman MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of late Carboniferous-early Permian lamprophyres and related volcanic rocks in the Saxothuringian zone of the Variscan Orogen (Germany). Geol Soc Lond, Spec Publ 223:335–359. https://doi.org/10.1144/GSL.SP.2004.223.01.15

    Google Scholar 

  • Walter BF, Immenhauser A, Geske A, Markl G (2015) Exploration of hydrothermal carbonate magnesium isotope signatures as tracers for continental fluid aquifers, Schwarzwald mining district, SW Germany. Chem Geol 400:87–105. https://doi.org/10.1016/j.chemgeo.2015.02.009

    Google Scholar 

  • Walter BF, Burisch M, Markl G (2016) Long-term chemical evolution and modification of continental basement brines—a field study from the Schwarzwald, SW Germany. Geofluids 16:604–623. https://doi.org/10.1111/gfl.12167

    Google Scholar 

  • Werner AG (1791) Neue Theorie von der Entstehung der Gänge: mit Anwendung auf den Bergbau besonders den freibergischen. Gerlach, Freiberg

  • Werner O, Lippolt HJ (2000) White mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. Geol Soc Lond, Spec Publ 179:323–336. https://doi.org/10.1144/GSL.SP.2000.179.01.19

    Google Scholar 

  • Wilson MJ (2013) Rock-forming minerals: clay minerals, Second edition. Rock-forming minerals series, 3C. The Geological Society, London

  • Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409. https://doi.org/10.1039/B108787H

    Google Scholar 

  • Winkler C (1886) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19:210–211. https://doi.org/10.1002/cber.18860190156

    Google Scholar 

  • Wolff R, Dunkl I, Lange J, Tonk C, Voigt T, von Eynatten H (2015a) Superposition of burial and hydrothermal events: post-Variscan thermal evolution of the Erzgebirge, Germany. Terra Nova 27:292–299. https://doi.org/10.1111/ter.12159

    Google Scholar 

  • Wolff R, Dunkl I, Kempe U, von Eynatten H (2015b) The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: constraints from fluorite (U-Th-Sm)/He thermochronology. Econ Geol 110:2025–2040. https://doi.org/10.2113/econgeo.110.8.2025

    Google Scholar 

  • Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002

    Google Scholar 

  • Wright K (2009) The incorporation of cadmium, manganese and ferrous iron in sphalerite: insights from computer simulations. Can Mineral 47:615–623. https://doi.org/10.3749/canmin.47.3.615

    Google Scholar 

  • Wright K, Gale JD (2010) A first principles study of the distribution of iron in sphalerite. Geochim Cosmochim Acta 74:3514–3520. https://doi.org/10.1016/j.gca.2010.03.014

    Google Scholar 

  • Ye L, Cook NJ, Ciobanu CL, Yuping L, Zhang Q, Tiegeng L, Wei G, Yulong Y, Danyushevsky LV (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol Rev 39:188–217. https://doi.org/10.1016/j.oregeorev.2011.03.001

    Google Scholar 

  • Yushkin NP, Yeremin NI, Koroshilova LA (1974) New manganiferous variety of sphalerite. Dokl Akad Nauk SSSR 216:1138–1141

    Google Scholar 

  • Zhang R, Lehmann B, Seltmann R, Sun W, Li C (2017) Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia). Geology 45:1095–1098

    Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. TOPO-EUROPE: the Geoscience of Coupled Deep Earth-Surface Processes 58:237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004

    Google Scholar 

Download references

Acknowledgments

Andreas Massanek and Christin Kehrer (Geoscientific and Ore Deposit Collection, TU Bergakademie Freiberg) are thanked for providing ore samples. Helene Brätz (GeoZentrum Nordbayern, Friedrich-Alexander Universität Erlangen-Nürnberg) helped during the LA-ICP-MS analyses; we gratefully acknowledge her assistance and guidance. Many thanks to Harald Strauß (Westfälische Wilhelms-Universität Münster) for sulfur isotope analyses. Anne Jantschke (TU Dresden) is thanked for Raman laser analyses. Andreas Bartzsch, Roland Würkert and Michael Stoll (HIF), and Michael Magnus (TUBAF) are thanked for sample preparation. The geographic map of Germany is based on data generated with generic mapping tools, GMT 5 (https://www.soest.hawaii.edu/gmt/). We would like to thank Marie-Christine Boiron, Thomas Monecke, and associate editor H. Albert Gilg for their constructive comments and Bernd Lehmann for handling our manuscript.

Funding

We are greatly indebted to the Dr. Erich-Krüger-Foundation for funding the new instrumental setup in the Fluid Inclusion Laboratory of the Economic Geology and Petrology Research Group in Freiberg. The first author is funded by the Biohydrometallurgical Center for Strategic Elements (BHMZ) of the Dr. Erich-Krüger-Foundation, TU Bergakademie Freiberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias E. Bauer or Mathias Burisch.

Additional information

Editorial handling: H. A. Gilg

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M.E., Burisch, M., Ostendorf, J. et al. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner Deposita 54, 237–262 (2019). https://doi.org/10.1007/s00126-018-0850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0850-0

Keywords

Navigation