Skip to main content
Log in

The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization—two Sn sources

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Hämmerlein polymetallic deposit is hosted in skarn, schists, and gneisses that reached their metamorphic peak at ~ 340 Ma during the Variscan orogeny. The deposit is spatially closely associated with one of the most voluminous granites of the Erzgebirge, the Eibenstock granite which intruded the metamorphic units at ~ 320 Ma, and locally also developed greisen mineralization. Cassiterite is the main ore mineral in the Hämmerlein skarn and in greisen mineralizations associated with the Eibenstock granite. The age of skarn formation is bracketed by multi-mineral Rb-Sr isochron ages of the gneisses (~ 340 Ma) and the end of ductile deformation (> 330 Ma). The dated calc-silicate minerals of the skarn have elevated Sn contents, which implies that some Sn was present in the system during regional metamorphism, i.e., well before the emplacement of the Eibenstock granite. Tin in the > 330 Ma old skarn silicates possibly was mobilized from the metamorphic wall rocks. Retrogression of the skarn mineral assemblage may have released some Sn that formed cassiterite in an assemblage with chlorite and fluorite. The Sr isotope signatures of fluorite indicate that this late assemblage is not related to cooling of the metamorphic rocks, but to the emplacement of the Eibenstock granite, which introduced additional Sn into the skarn. Thus, mineralization in the Hämmerlein deposit includes Sn that was introduced during two different events from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anglo Saxony Mining (2015) Westerzgebirge project Hämmerlein-Tellerhäuser: long section through adit. http://www.anglosaxony.com/projects/germany/tellerhauser. Accessed 04 June 2018

  • Brady J, Perkins D (2015) Mineral formulae recalculation. SERC Carleton College http://serc.carleton.edu/research_education/equilibria/mineralformulaerecalculation.html. Accessed 31 May 2017

  • Breiter K (1993) The Nejdek pluton—discussion of granite evolution and Sn-W mineralization. Z Geol Wissenschaft 21:2–36

    Google Scholar 

  • Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151:105–121

    Article  Google Scholar 

  • Breiter K, Förster HJ, Seltmann R (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkoský les metallogenic province. Mineral Deposita 34:505–521

    Article  Google Scholar 

  • Dadàk V, Novák F (1965) Tin-containing andradite from Plavno mine in the Krušné Hory Mts., Czechoslovakia. Mineral Mag 35:379–385

    Google Scholar 

  • deCapitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • de Vore GW (1955) The rate of adsorption in the fractionation and distribution of elements. J Geol 63:159–190

    Article  Google Scholar 

  • Diamond LW (2001) Review of the systematics of CO2-H2O fluid inclusions. Lithos 55:69–99

    Article  Google Scholar 

  • Förster B (1996) U/Pb Datierung an Pechblenden der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Ph.D. Thesis, University of Giessen, Germany

    Google Scholar 

  • Förster HJ (1998) Die variszischen Granite des Erzgebirge und ihre akzessorischen Minerale. Habilitation Thesis, Tech Univ Bergakademie Freiberg, Germany

    Google Scholar 

  • Förster HJ, Romer RL (2010) Carboniferous magmatism. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan orogen, 1st edn. Schweizerbart, Stuttgart, pp 287–308

    Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Spec Pap 230:67–90

    Google Scholar 

  • Glodny J, Bingen B, Austrheim H, Molina JF, Rusin A (2002) Precise eclogitization ages deduced from Rb/Sr mineral systematics: the Maksyutov complex, Southern Urals, Russia. Geochim Cosmochim Acta 66:1221–1235

    Article  Google Scholar 

  • Hawthorne FC, Dirlam DM (2011) Tourmaline the indicator mineral: from atomic arrangement to viking navigation. Elements 7:307–312

    Article  Google Scholar 

  • Heinrich W (2007) Fluid immiscibility in metamorphic rocks. Rev Mineral Geochem 65:389–430

    Article  Google Scholar 

  • Johan Z, Strnad L, Johan V (2012) Evolution of the Cínovec (Zinnwald) granite cupola, Czech Republic: composition of feldspars and micas, a clue to the origin of W, Sn mineralization. Can Mineral 50:1131–1148

    Article  Google Scholar 

  • Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Mineral Deposita 39:646–669

    Article  Google Scholar 

  • Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone–heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Geol S Am S 423:153–172

    Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

  • Kroner U, Roscher M, Romer RL (2016) Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence. Tectonophysics 681:220–233

    Article  Google Scholar 

  • Kröner A, Willner AP, Hegner E, Frischbutter A, Hofmann J, Bergner R (1995) Latest Precambrian (Cadomian) zircon ages, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundsch 84:437–456

    Article  Google Scholar 

  • Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and minerals names. Can Mineral 35:219–246

    Google Scholar 

  • Lefebvre MG, Romer RL, Glodny J, Roscher M (2017) Two stages of skarn formation in the Hämmerlein tin-skarn deposit, western Erzgebirge, Germany. 14th SGA Bienn Meet 4:1305–1308

  • Leonhardt D, Geißler E, Engelhardt-Sobe A, Baumgart G (2004) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5542 Johanngeorgenstadt. Sächsisches Landesamt für Umwelt und Geologie Abteilung Geologie (ed)

  • Leonhardt D, Geißler E, Engelhardt A, Baumgart G. (2010) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5541 Eibenstock. Sächsisches Landesamt für Umwelt und Geologie Abteilung Geologie (ed)

  • Leonhardt D, Geißler E, Fritzsche H (1999) Geologische Karte des Freistaates Sachsen 1:25000. Blatt 5543 Oberwiesenthal. Sächsisches Landesamt für Umwelt und Geologie Abteilung Geologie (ed)

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705

    Article  Google Scholar 

  • Malyshev BI, Korzhanovskaya VS (1989) Behavior of tin in calcareous-skarn and greisen processes. Geokhimiya 2:216–226

    Google Scholar 

  • Malyshev BI, Mironova OF, Naumov VB, Savel’eva NI, Salazkin AN, Volosov AG (1997) Fluids of the Hemmerlein Skarn-Greisen tin deposit, Erzgebirge, Germany. Geokhimiya 1:179–188

    Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophys 126:329–374

    Article  Google Scholar 

  • McIver JR, Mihálik P (1975) Stannian andradite from “Davib Ost”, South West Africa. Can Mineral 13:217–221

    Google Scholar 

  • Mingram B (1998) The Erzgebirge, Germany, a subducted part of northern Gondwana: geochemical evidence for repetition of early Palaeozoic metasedimentary sequences in metamorphic thrust units. Geol Mag 135:785–801

    Article  Google Scholar 

  • Mueller AG, McNaughton NJ (2000) U-Pb ages constraining batholith emplacement, contact metamorphism, and the formation of gold and W-Mo skarns in the southern cross area, Yilgarn craton, Western Australia. Econ Geol 95:1231–1257

    Article  Google Scholar 

  • Mueller AG, Campbell IH, Schiøtte L, Sevigny JH, Layer PW (1996) Constraints on the age of granitoid emplacement, metamorphism, gold mineralization, and subsequent cooling of the Archean greenstone terrane at Big Bell, Western Australia. Econ Geol 91:896–915

    Article  Google Scholar 

  • Rojík P (2005) Tin deposits at Přebuz and Rolava in the Krušné hory/Erzgebirge, Czech Republic: classic localities, new challenges. J Czech Geol Soc 50:157–165

    Google Scholar 

  • Romer RL, Hahne K (2010) Life of the Rheic Ocean: scrolling through the shale record. Gondwana Res 17:236–253

    Article  Google Scholar 

  • Rötzler K, Plessen B (2010) The Erzgebirge: a pile of ultrahigh- to low-pressure nappes of Early Paleozoic rocks and their Cadomian basement. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 253–270

    Google Scholar 

  • Rötzler K, Schumacher R, Maresch W, Willner A (1998) Characterization and geodynamic implications of contrasting metamorphic evolution in juxtaposed high-pressure units of the western Erzgebirge (Saxony, Germany). Eur J Mineral 10:261–280

    Article  Google Scholar 

  • Schmidt C (2018) Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn (IV) species. Geochim Cosmochim Acta 220:499–511

    Article  Google Scholar 

  • Schuppan W, Hiller A (2012) Die Komplexlagerstätten Tellerhäuser und Hämmerlein. Bergbaumonografie, Freiberg Band 17:162p

    Google Scholar 

  • Selway J, Xiong J (2015) Tourmaline recalculation: developed by Julie Selway & Jian Xiong. Andy Tindle—Free Software. http://www.open.ac.uk/earth-research/tindle/AGTWebPages/AGTSoft.html. Accessed 31 May 2017

  • Shapenko VV, Šmidel P (1991) Sn and W mineralization in skarn-greisen deposits at the northern margin of the Bohemian massif. Geokhimiya 5:724–732

    Google Scholar 

  • Štemprok M, Blecha V (2015) Variscan Sn-W-Mo metallogeny in the gravity picture of the Krušné hory/Erzgebirge granite batholith (Central Europe). Ore Geol Rev 69:285–300

    Article  Google Scholar 

  • Sukhoruchkin SI, Soroko ZN (2009a) Atomic mass and nuclear binding energy for Fe-56 (Iron). In: Schopper H (ed) Landolt-Börnstein—group I elementary particules, nuclei and atoms. Springer, Berlin Heidelberg, pp 2276–2278

    Google Scholar 

  • Sukhoruchkin SI, Soroko ZN (2009b) Atomic mass and nuclear binding energy for Sn-119 (tin). In: Schopper H (ed) Landolt-Börnstein—group I elementary particules, nuclei and atoms. Springer, Berlin Heidelberg, pp 6838–6840

    Google Scholar 

  • Tichomirowa M, Hofmann M, Schaltegger U, Sergeev S, von Quadt A, Whitehouse M (2016) The “older” and “younger” granites from the western Erzgebirge—comparison of different zircon dating methods. Freib Online Geosci 46:36–38

    Google Scholar 

  • Tichomirowa M, Leonhardt D (2010) New age determinations (Pb/Pb zircon evaporation, Rb/Sr) on the granites from Aue-Schwarzenberg and Eibenstock, western Erzgebirge, Germany. Z Geol Wiss 38:99–123

    Google Scholar 

  • Tischendorf G, Gottesmann B, Förster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral Mag 61(409):809–834

    Article  Google Scholar 

  • Tischendorf G, Förster HJ, Gottesmann B (2001) Minor and trace-element composition of trioctahedral micas: a review. Mineral Mag 65:249–276

    Article  Google Scholar 

  • Velichkin VI, Chernyshov IV, Simonova LI, Yudintsev SV (1994) Geotectonic position, petrochemical and geochronological features of the Younger Granite Complex in the Krŭsné Hory (Erzgebirge) of the Bohemian massif. J Czech Geol Soc 39:116

    Google Scholar 

  • Wang L, Shimazaki H, Wang J, Wang Y (2001) Ore-forming fluid and metallization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia. Sci China Ser D 44:735–747

    Article  Google Scholar 

  • Wang RC, Xie L, Chen J, Yu A, Wang LB, Lu JJ, Jinchu Zhu JC (2013) Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China): constraints on processes of tin mineralization in oxidized granites. J Asian Earth Sci 74:361–372

    Article  Google Scholar 

  • Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86:556–570

    Article  Google Scholar 

  • Werner O, Lippolt HJ (2000) White mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks simulating the chronological results by a model of Variscan crustal imbrication. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt of Central Europe. Geol Soc Lond Spec Publ 179:323–336

  • Willner A, Rötzler K, Maresch W (1997) Pressure-temperature and fluid evolution of quartzo-feldspathic rocks with a relic high-pressure, granulite-facies history from the central Erzgebirge (Saxony, Germany). J Petrol 38:307–336

    Article  Google Scholar 

  • Zhao KD, Jiang SY, Jiang YH, Wang RC (2005) Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province, South China: implication for the genesis of granite and related tin mineralization. Eur J Mineral 17:635–648

    Article  Google Scholar 

Download references

Acknowledgments

We thank Saxore Bergbau GmbH for providing access to the outcrops and samples. We thank Bettina Hübner for her support during the chemical preparation of the samples, and Franziska Wilke and Oona Appelt for their help during EPMA analysis.

Funding

This project was supported by the German Government BMBF grant 033R134A awarded to RLR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie G. Lefebvre.

Additional information

Editorial handling: R. Linnen

Electronic supplementary material

ESM 1

(DOCX 120 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefebvre, M.G., Romer, R.L., Glodny, J. et al. The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization—two Sn sources. Miner Deposita 54, 193–216 (2019). https://doi.org/10.1007/s00126-018-0830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0830-4

Keywords

Navigation