Mineralium Deposita

, Volume 53, Issue 3, pp 417–434 | Cite as

Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach

  • Sérgio Benjamin Baggio
  • Léo Afraneo Hartmann
  • Marina Lazarov
  • Hans-Joachim Massonne
  • Joachim Opitz
  • Thomas Theye
  • Tillmann Viefhaus
Article

Abstract

Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is ~200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from −0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.

Keywords

Paraná volcanic province Native copper Copper isotopes Hydrothermal mineralization 

Notes

Acknowledgements

The financial support was provided by Project VALE/CNPq, MCT, and Mineral Sector Fund (CT-Mineral) entitled “Desenvolvimento de metodologia de exploração geológica para geodos de ametista e ágata, cobre e outros bens minerais em ambiente hidrotermal do Grupo Serra Geral, sul-sudeste do Brasil” and project of excellence PRONEX-FAPERGS/CNPq on strategic minerals from southern Brazil, coordinated by Léo A. Hartmann. The authors wish to thank P.C. Soares, A.R. Cabral, three anonymous reviewers and the editors Frank Melcher and Georges Beaudoin for their comments that helped to improve the manuscript.

Supplementary material

126_2017_748_MOESM1_ESM.pdf (87 kb)
ESM 1 (PDF 86 kb)
126_2017_748_MOESM2_ESM.pdf (14 kb)
ESM 2 (PDF 13 kb)
126_2017_748_MOESM3_ESM.xls (36 kb)
ESM 3 (XLS 35 kb)
126_2017_748_MOESM4_ESM.xls (42 kb)
ESM 4 (XLS 41 kb)
126_2017_748_MOESM5_ESM.xls (44 kb)
ESM 5 (XLS 44 kb)

References

  1. Albarède F (2004) The stable isotope geochemistry of copper and zinc. Rev Mineral Geochem 55:409–427CrossRefGoogle Scholar
  2. Almeida FFM (1986) Distribuição regional e relações tectônicas do magmatismo pós-paleozóico no Brasil. Rev Bras Geociências 16:325–349Google Scholar
  3. Arena KR, Hartmann LA, Baggio SB (2014) Geological controls of copper, gold and silver in the Serra Geral Group, Realeza region, Paraná, Brazil. Ore Geol Rev 63:178–200CrossRefGoogle Scholar
  4. Arioli EE (2008) Arquitetura faciológica da sequência vulcânica e o significado exploratório das anomalias geoquímicas de elementos do grupo da platina (EGP) e metais associados no sistema magmático Serra Geral, Estado do Paraná, Brasil. PhD Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 262 p.Google Scholar
  5. Asael D, Matthews A, Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254CrossRefGoogle Scholar
  6. Bellieni G, Comin-Chiaramonti P, Marques LS, Melfi AJ, Piccirillo EM, Nardy AJ, Roisenberg A (1984) High- and low-Ti flood basalts from the Paraná Plateau (Brazil): petrology and geochemical aspects bearing on their mantle origin. Neues Jahrb Mineral Abh 150:272–306Google Scholar
  7. Bornhorst TJ, Barron RJ (2011) Copper deposits of the western Upper Peninsula of Michigan. Geol Soc Am 24:83–99Google Scholar
  8. Butler BS, Burbank WS (1929) The copper deposits of Michigan. U.S. Government printing office, 238pp. WashingtonGoogle Scholar
  9. Cabral AR, Beaudoin G (2007) Volcanic red-bed copper mineralization related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Mineral Deposita 42:901–912CrossRefGoogle Scholar
  10. Carr PF, Pemberton JW, Nunan E (1999) Low-grade metamorphism of mafic lavas, upper Permian Broughton Formation, Sydney Basin. Aust J Earth Sci 46:839–849CrossRefGoogle Scholar
  11. Cornwall HR (1956) A summary of ideas on the origin of native copper deposits. Econ Geol 51:615–631CrossRefGoogle Scholar
  12. Costa AFU (1982) Geologia aplicada à prospecção de cobre em basaltos na área de Vista Alegre: Frederico Westphalen, RS. Acta Geol Leopold 11:17–36Google Scholar
  13. Dekov VM, Rouxel O, Asael D, Hålenius U, Munnik F (2013) Native Cu from the oceanic crust: isotopic insights into native metal origin. Chem Geol 359:136–149CrossRefGoogle Scholar
  14. Duarte LC, Hartmann LA, Vasconcelos MAS, Medeiros JTN, Theye T (2009) Epigenetic formation of amethyst-bearing geodes from Los Catalanes gemological district, Artigas, Uruguay, southern Paraná Magmatic Province. J Volcanol Geoth Res 184:427–436CrossRefGoogle Scholar
  15. Duarte LC, Hartmann LA, Ronchi LH, Berner Z, Theye T, Massonne HJ (2011) Stable isotope and mineralogical investigation of the genesis of amethyst geodes in the los Catalanes gemological district, Uruguay, southernmost Paraná volcanic province. Mineral Deposita 46:239–255CrossRefGoogle Scholar
  16. Frank HT, Gomes MEB, Formoso ML (2009) Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências UFRGS 36:49–57Google Scholar
  17. Gilg HA, Morteani G, Kostitsyn Y, Preinfalk C, Gatter I, Strieder AJ (2003) Genesis of amethyst geodes in basaltic rocks of the rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon and Sr isotope study on basalt, quartz, and calcite. Mineral Deposita 38:1009–1025CrossRefGoogle Scholar
  18. Gilg HA, Krüger Y, Taubald H, van der Kerkhof AM, Frenz M, Morteani G (2014) Mineralisation of amethyst-bearing geodes in Ametista do Sul (Brazil) from low-temperature sedimentary brines: evidence from monophase liquid inclusions and stable isotopes. Mineral Deposita 49:861–877CrossRefGoogle Scholar
  19. Gordon Jr M (1947) Classification of the Gondwanic rocks of Paraná, Santa Catarina and Rio Grande do Sul. Rio de Janeiro: DNPM, Divisão de Geologia e Mineralogia, Notas Preliminares e Estudos 38a:1–19Google Scholar
  20. Graham S, Pearson N, Jackson S, Griffin W, O’Reilly S (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem Geol 207:147–169CrossRefGoogle Scholar
  21. Greenberger RN, Mustard JF, Kumar PS, Dyar MD, Breves EA, Sklute EC (2012) Low temperature aqueous alteration of basalt: mineral assemblages of Deccan basalts and implication for Mars. J Geophys Res 117:E00J12CrossRefGoogle Scholar
  22. Hartmann LA (2008) Amethyst geodes formed from hot water in dinosaur times, 1st edn. UFRGS, Porto Alegre 57 pp Google Scholar
  23. Hartmann LA, Wildner W, Duarte LC, Duarte SK, Pertille J, Arena KR, Martins LC, Dias N.L (2010) Geochemical and scintillometric characterization and correlation of amethyst-bearing Paraná lavas from the Quaraí and Los Catalanes districts, Brazil and Uruguay. Geol Mag 147:954–970Google Scholar
  24. Hartmann LA, Duarte LC, Massonne HJ, Michelin C, Rosenstengel LM, Bergmann M, Theye T, Pertille J, Arena KR, Duarte SK, Pinto VM, Barboza EG, Rosa MLCC, Wildner W (2012a) Sequential opening and filling of cavities forming vesicles, amygdales and giant amethyst geodes in lavas from the southern Paraná volcanic province, Brazil and Uruguay. Int Geol Rev 54:1–14CrossRefGoogle Scholar
  25. Hartmann LA, Medeiros JTN, Petruzzellis LT (2012b) Numerical simulations of amethyst geode cavity formation by ballooning of altered Paraná volcanic rocks, South America. Geofluids 12:133–141CrossRefGoogle Scholar
  26. Horn I, von Blanckenburg F (2007) Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim Acta B 62:410–422CrossRefGoogle Scholar
  27. Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70:3677–3688CrossRefGoogle Scholar
  28. Hussak E (1906) Ueber das Vorkommen von gediegen Kupfer in den Diabasen von São Paulo. Centralb Mineral, pp 333–335Google Scholar
  29. Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan. Econ Geol 107:1489–1497CrossRefGoogle Scholar
  30. Ikehata K, Notsu K, Hirata T (2011) Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Econ Geol 106:307–316CrossRefGoogle Scholar
  31. Janasi VA, Freitas VA, Heaman LH (2011) The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth Planet Sci Lett 302:147–153CrossRefGoogle Scholar
  32. Juchem PL (2014) Amethyst mineralization in rhyodacites of the Serra Geral Group, Paraná volcanic Province. In: Hartmann LA, Baggio SB (orgs) Metallogeny and mineral exploration in the Serra Geral Group, 1st ed. UFRGS, Porto Alegre, pp 321–334Google Scholar
  33. Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350CrossRefGoogle Scholar
  34. Lazarov M, Horn I (2015) Matrix and energy effects during in situ determinations of Cu isotope ratios by UV-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta B 111:64–73CrossRefGoogle Scholar
  35. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic-rocks based on the total alkali sílica diagram. J Petrol 3:745–750CrossRefGoogle Scholar
  36. Li H, Mao J, Chen Y, Wang D, Zhang C, Xu H (2005) Epigenetic hydrothermal features of the Emeishan basalt copper mineralization in NE Yunnan, SW China. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer Berlin Heidelberg, Beijing, pp 149–152CrossRefGoogle Scholar
  37. Liu S-A, Huang J, Liu J, Wörner G, Yang W, Tang Y-J, Chen Y, Tang L, Zheng J, Li S (2015) Copper isotopic composition of the silicate Earth. Earth Planet Sc Lett 427:95–103CrossRefGoogle Scholar
  38. Livnat A (1983) Metamorphism and copper mineralization of the Portage Lake Lava Series, northern Michigan. PhD Thesis, University of Michigan, Ann Arbor, USAGoogle Scholar
  39. Lore J, Gao H, Aydin A (2000) Viscoelastic thermal stress in cooling basalt flows. J Geophys Res 105:695–709CrossRefGoogle Scholar
  40. Maher KC (2005) Analysis of copper isotope ratios by multi-collector inductively coupled plasma mass spectrometry and interpretation of copper isotope ratios from copper mineralization. PhD Thesis, Washington State University, USA, 239 ppGoogle Scholar
  41. Mantovani MSM, Marques LS, De Sousa MA, Civetta L, Atalla L, Innocenti F (1985) Trace element and strontium isotope constraints on the origin and evolution of Paraná continental flood basalts of Santa Catarina state (southern Brazil). J Petrol 26:187–209CrossRefGoogle Scholar
  42. Maréchal C, Sheppard SMF (2002) Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30° and 50° C. Geochim Cosmochim Acta 66:A484Google Scholar
  43. Maréchal C, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273CrossRefGoogle Scholar
  44. Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228CrossRefGoogle Scholar
  45. Massonne HJ, Opitz J, Theye T, Nasir S (2013) Evolution of a very deeply subducted metasediment from As Sifah, northeastern coast of Oman. Lithos 156 – 159:171–185CrossRefGoogle Scholar
  46. Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009) Exploration potential of cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6CrossRefGoogle Scholar
  47. Mathur R, Ruiz J, Casselman MJ, Megaw P, Van Egmond R (2012) Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Cañarico Norte porphyry copper deposit, Northern Peru. Mineral Deposita 47:755–762CrossRefGoogle Scholar
  48. Melfi AJ, Piccirillo EM, Nardy AJR (1988) Geological and magmatic aspects of the Paraná Basin an introduction. In: Piccirillo EM, Melfi AJ (eds) The Mesozoic flood volcanism of the Paraná Basin: Petrogenetic and geophysical aspects. IAG, USP, São Paulo, pp 1–13Google Scholar
  49. Mello SK (2000) Estudo petrológico da região de Água Perdida no vale do Rio Piquiri – PR: Reconhecimento das mineralizações de cobre e produtos de alteração em rochas básicas da Formação Serra Geral – Bacia do Paraná. PPGeo UNISINOS, São Leopoldo, BrazilGoogle Scholar
  50. Meunier A (2005) Clays. Springer Berlin Heidelberg, New York 472 p Google Scholar
  51. Morteani G, Kostitsyn Y, Preinfalk C, Gilg HA (2010) The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guarani aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study. Int J Earth Sci 99:927–947CrossRefGoogle Scholar
  52. Nakamura K, Wildner W, Shibuya A, Masuta K, Murakami T, Romanini S (2003) Mineral exploration of the Cu–Ni PGE deposits in the Paraná Basin, Southern Brazil, phase II. Tokyo, Japan Mining Engineering Center for International Cooperation–JMEC/Geological Survey of Brazil–CPRM, Porto Alegre, BrazilGoogle Scholar
  53. Oeser M, Weyer S, Horn I, Schuth S (2014) High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS. Geostand Geoanal Res 38:311–328CrossRefGoogle Scholar
  54. Peate DW (1997) The Paraná-Etendeka Province. In: Mahoney JJ, Coffin MR (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism, Geophysical Monograph Series, vol vol 100. American Geophysical Union, Washington DC, pp 217–245Google Scholar
  55. Peate DW, Hawkesworth CJ, Mantovani MSM (1992) Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution. Bull Volcanol 55:119–139CrossRefGoogle Scholar
  56. Peate DW, Hawkesworth CJ, Mantovani MSM, Rogers NW, Turner SP (1999) Petrogenesis and stratigraphy of the high-Ti/Y Urubuci magma type in the Paraná flood basalt province and implications for the nature of ‘Dupal’-type mantle in the south Atlantic region. J Petrol 40:451–473CrossRefGoogle Scholar
  57. Peck DL, Minakami T (1968) Formation of columnar joints in the upper part of Kilauean lava lakes, Hawaii. Bull Geol Soc Am 79:1151–1166CrossRefGoogle Scholar
  58. Pinto VM, Hartmann LA (2011) Flow-by-flow chemical stratigraphy and evolution of thirteen Serra Geral Group basalt flows from Vista Alegre, southernmost Brazil. An Acad Bras Ciênc 83:425–440CrossRefGoogle Scholar
  59. Pinto VM, Hartmann LA, Santos JOS, McNaughton NJ, Wildner W (2011a) Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at 135 Ma. Chem Geol 281:93–102CrossRefGoogle Scholar
  60. Pinto VM, Hartmann LA, Wildner W (2011b) Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. Int Geol Rev 53:1163–1179CrossRefGoogle Scholar
  61. Rosenstengel LM, Hartmann LA (2012) Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geol Rev 48:332–348CrossRefGoogle Scholar
  62. Seo JH, Lee SK, Lee I (2007) Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol 243:225–237CrossRefGoogle Scholar
  63. Sherman DM (2013) Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: predictions from hybrid density functional theory. Geochim Cosmochim Acta 118:85–97CrossRefGoogle Scholar
  64. Shields WR, Goldich SS, Garner EL, Murphy TJ (1965) Natural variations in the abundance ratio and the atomic weight of copper. J Geophys Res 70:479–491CrossRefGoogle Scholar
  65. Szubert EC, Grazia CA, Shintaku I (1979) Projeto Cobre em Itapiranga. CPRM SUREG, Porto Alegre 474 pp Google Scholar
  66. Tazaki K, Fyfe WS, Tazaki K, Bischoff J, Rocha BR (1988) Occurrence of copper films in basalt from the Serra Geral formation, Paraná Basin, Brazil. Rev Bras Geoc 18:332–337Google Scholar
  67. White C (1908) Relatório Final. Comissão de Estudos das Minas de Carvão de Pedra do Brazil. Imprensa Nacional, Rio de Janeiro. Re-impressão - Edição Comemorativa: 100 anos do Relatório White, CPRM, 2008, Belo Horizonte, 617 ppGoogle Scholar
  68. Wildner W, Hartmann LA, Cunha-Lopes R (2009) A proposed stratigraphy for the Serra Geral Group in the Paraná Basin. In: Milani EJ, Chemale F Jr (eds) Correlation Brazil–Africa. PETROBRAS, GramadoGoogle Scholar
  69. Xu W, Van der Voo R, Peacor DR, Beaubouef RT (1997) Alteration and dissolution of fine-grained magnetite and its effects on magnetization of the ocean floor. Earth Planet Sci Lett 151:279–288CrossRefGoogle Scholar
  70. Yui TF, Chang SS (1999) Formation conditions of vesicle/fissure-filling smectites in Penghu basalts: a stable-isotope assessment. Clay Miner 34:381–393CrossRefGoogle Scholar
  71. Zhang D, Zhou T, Yuan F, Fiorentini ML, Said N, Lu Y, Pirajno F (2013) Geochemical and isotopic constraints on the genesis of the Jueluotage native copper mineralized basalt, Eastern Tianshan, Northwest China. J Asian Earth Sci 73:317–333CrossRefGoogle Scholar
  72. Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sérgio Benjamin Baggio
    • 1
  • Léo Afraneo Hartmann
    • 1
  • Marina Lazarov
    • 2
  • Hans-Joachim Massonne
    • 3
  • Joachim Opitz
    • 3
  • Thomas Theye
    • 3
  • Tillmann Viefhaus
    • 3
  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Leibniz Universität HannoverHannoverGermany
  3. 3.Universität StuttgartStuttgartGermany

Personalised recommendations