Mineralium Deposita

, Volume 53, Issue 3, pp 299–309 | Cite as

Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

  • MingJian Cao
  • KeZhang Qin
  • GuangMing Li
  • Noreen J. Evans
  • Brent I.A. McInnes
  • JinXiang Li
  • JunXing Zhao
Article
  • 330 Downloads

Abstract

Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10−4 emu g−1 oe−1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10−4 emu g−1 oe−1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ∼NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon εHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative εHf(t) (−16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices (fO2 and εHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an exploration context for the west Central Lhasa subterrane, features indicative of potential fertility might include more oxidized, positive εHf(t), young rocks (<130 Ma).

Keywords

Oxidation state Magnetic susceptibility Fe3+/Fetotal ratios Zircon Ce4+/Ce3+Central Lhasa subterrane 

Notes

Acknowledgments

The authors are greatly indebted to Jingpeng Sun for assistance with the measurement of whole-rock magnetic susceptibility, Hongyue Wang for assistance with the whole-rock Fe2O3/FeO analysis, and Yueheng Yang for assistance with the LA-ICPMS zircon trace element analysis. We express our gratitude to two anonymous reviewers and the editor Dr. Bernd Lehmann for their constructive comments and excellent suggestions that helped to improve the manuscript. This research was financially supported by Chinese Academy of Sciences Strategic Priority Research Program (XDB03010303), the Natural Science Foundation of China (41672090 and 41472074), the Tibetan Large Deposit Metallogenic Specialization (1212011221073), and International Postdoctoral Exchange Fellowship Program of China to Mingjian Cao.

Supplementary material

126_2017_739_MOESM1_ESM.doc (696 kb)
ESM 1 (DOC 696 kb)
126_2017_739_MOESM2_ESM.doc (89 kb)
ESM 2 (DOC 89 kb)
126_2017_739_MOESM3_ESM.xls (32 kb)
ESM 3 (XLS 32 kb)
126_2017_739_MOESM4_ESM.xls (200 kb)
ESM 4 (XLS 199 kb)

References

  1. Allègre C, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J, Achache J, Schärer U, Marcoux J (1984) Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307:17–22CrossRefGoogle Scholar
  2. Ballard JR, Palin MJ, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364CrossRefGoogle Scholar
  3. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348CrossRefGoogle Scholar
  4. Blevin PL (2004) Redox and compositional parameters for interpreting granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resour Geol 54:241–252CrossRefGoogle Scholar
  5. Blundy J, Wood B (1994) Prediction of crystal melt partition coefficients from elastic moduli. Nature 372:452–454Google Scholar
  6. Boekhout F, Roberts NMW, Gerdes A, Schaltegger U (2015) A Hf-isotope perspective on continent formation in the south Peruvian Andes. Geol Soc Spec Publ 389:305–321CrossRefGoogle Scholar
  7. Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197CrossRefGoogle Scholar
  8. Cao MJ, Qin KZ, Li GM, Li JX, Zhao JX, Evans NJ, Hollings P (2016a) Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet. Gondwana Res 39:386–400CrossRefGoogle Scholar
  9. Cao MJ, Li GM, Qin KZ, Evans NJ, Seitmuratova EY (2016b) Assessing the magmatic affinity and petrogenesis of granitoids at the giant Aktogai porphyry Cu deposit, Central Kazakhstan. Am J Sci 316:614–668CrossRefGoogle Scholar
  10. Cao MJ, Qin KZ, Li GM, Evans NJ, Hollings P, Maisch M, Kappler A (2017) Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): Mössbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geol Rev 86:382–403CrossRefGoogle Scholar
  11. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141CrossRefGoogle Scholar
  12. Deckart K, Godoy E, Bertens A, Jerez D, Saeed A (2010) Barren Miocene granitoids in the central Andean metallogenic belt, Chile: geochemistry and Nd-Hf and U-Pb isotope systematics. Andean Geol 37:1–31Google Scholar
  13. Demouy S, Paquette JL, de Saint BM, Benoit M, Belousova EA, O’Reilly SY, García F, Tejada LC, Gallegos R, Sempere T (2012) Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U–Pb and Hf in-situ data on plutonic rocks. Lithos 155:183–200CrossRefGoogle Scholar
  14. Dewey JF, Shackleton RM, Chengfa C, Yiyin S (1988) The tectonic evolution of the Tibetan plateau. Phil Transact R Soc London, Math Phys Sci A 327:379–413CrossRefGoogle Scholar
  15. Dolgopolova A, Seltmann R, Armstrong R, Belousova E, Pankhurst RJ, Kavalieris I (2013) Sr–Nd–Pb–Hf isotope systematics of the Hugo Dummett Cu–Au porphyry deposit (Oyu Tolgoi, Mongolia). Lithos 164–167:47–64CrossRefGoogle Scholar
  16. Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100CrossRefGoogle Scholar
  17. Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40:783–786CrossRefGoogle Scholar
  18. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar
  19. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420CrossRefGoogle Scholar
  20. Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester P (ed) laser ablation-ICP-MS in the earth sciences. Mineral Assoc Canada Short Course 40:204–207Google Scholar
  21. Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508CrossRefGoogle Scholar
  22. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  23. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  24. Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC (2015) Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ Geol 110:1541–1575CrossRefGoogle Scholar
  25. Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Min Geology 27:293–305Google Scholar
  26. Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464CrossRefGoogle Scholar
  27. Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245CrossRefGoogle Scholar
  28. Jiang X, Zhao ZD, Zhu DC, Zhang FQ, Dong GC, Mo XX, Guo TY (2010) Zircon U-Pb geochronology and Hf isotopic geochemistry of Jiangba, and Xiongba granitoids in western Gangdese, Tibet. Acta Petrol Sin 26:2155–2164 (in Chinese with English abstract) Google Scholar
  29. Kapp P, Murphy MA, Yin A, Harrison TM, Ding L, Guo J (2003) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22:1029Google Scholar
  30. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  31. Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336CrossRefGoogle Scholar
  32. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarède F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685CrossRefGoogle Scholar
  33. Li JX, Qin KZ, Li GM, Cao MJ, Xiao B, Chen L, Zhao JX, Evans NJ, McInnes B (2012) Petrogenesis and thermal history of the Yulong porphyry copper deposit, eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineral Petrol 105:201–221CrossRefGoogle Scholar
  34. Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Cao MJ, Chen L (2013) Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu–Au deposit, central Tibet: evidence from U–Pb geochronology, petrochemistry and Sr–Nd–Hf–O isotope characteristics. Lithos 160–161:216–227CrossRefGoogle Scholar
  35. Li JX, Qin KZ, Li GM, Richards JP, Zhao JX, Cao MJ (2014) Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos 198–199:77–91CrossRefGoogle Scholar
  36. Li GM, Cao MJ, Qin KZ, Hollings P, Evans NJ, Seitmuratova EY (2016) Petrogenesis of ore-forming and pre/post-ore granitoids from the Kounrad, Borly and Sayak porphyry/skarn Cu deposits, Central Kazakhstan. Gondwana Res 37:408–425CrossRefGoogle Scholar
  37. Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ, Zhang XN (2017) Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions. Gondwana Res 41:110–127CrossRefGoogle Scholar
  38. Lu YJ, Loucks RR, Fiorentini M, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA, Kobussen A (2016) Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. Soc Econ Geol Spec Publ 19:329–347Google Scholar
  39. Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794CrossRefGoogle Scholar
  40. Mišković A, Schaltegger U (2009) Crustal growth along a non-collisional cratonic margin: a Lu–Hf isotopic survey of the eastern cordilleran granitoids of Peru. Earth Planet Sci Lett 279:303–315CrossRefGoogle Scholar
  41. Montecinos P, Schärer U, Vergara M, Aguirre L (2008) Lithospheric origin of Oligocene–Miocene magmatism in Central Chile: U–Pb ages and Sr–Pb–Hf isotope composition of minerals. J Petrol 49:555–580CrossRefGoogle Scholar
  42. Mullen EK, McCallum IS (2013) Coexisting pseudobrookite, ilmenite, and titanomagnetite in hornblende andesite of the coleman pinnacle flow, mount baker, washington: evidence for a highly oxidized arc magma. Am Miner 98:417–425CrossRefGoogle Scholar
  43. Mungall J (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich cu deposits. Geology 30:915–918CrossRefGoogle Scholar
  44. Muñoz M, Charrier R, Fanning CM, Maksaev V, Deckart K (2012) Zircon trace element and O–Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas. J Petrol 53:1091–1122CrossRefGoogle Scholar
  45. Pan G, Wang L, Li R, Yuan S, Ji W, Yin F, Zhang W, Wang B (2012) Tectonic evolution of the Qinghai-Tibet plateau. J Asian Earth Sci 53:3–14CrossRefGoogle Scholar
  46. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423CrossRefGoogle Scholar
  47. Polliand M, Schaltegger U, Frank M, Fontbote L (2005) Formation of intra-arc volcanosedimentary basins in the western flank of the central Peruvian Andes during Late Cretaceous oblique subduction: field evidence and constraints from U–Pb ages and Hf isotopes. Int J Earth Sci 94:231–242CrossRefGoogle Scholar
  48. Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45CrossRefGoogle Scholar
  49. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  50. Volkmer JE, Kapp P, Guynn JH, Lai Q (2007) Cretaceous-tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics 26:6CrossRefGoogle Scholar
  51. Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB, DuFrane SA (2014) Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo±Au mineralization. Econ Geol 109:1943–1965CrossRefGoogle Scholar
  52. Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA, Zhu JJ (2015) The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth Sci Rev 150:68–94CrossRefGoogle Scholar
  53. Wang CM, Bagas L, Lu YJ, Santosh M, Du B, McCuaig TC (2016) Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: insights from zircon Hf-isotopic mapping. Earth Sci Rev 156:39–65CrossRefGoogle Scholar
  54. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  55. Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–345CrossRefGoogle Scholar
  56. Xie LW, Zhang YB, Zhang HH, Sun JF, Wu FY (2008) In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chin Sci Bull 53:1565–1573Google Scholar
  57. Yao XF, Tang JX, Li ZJ, Deng SL, Ding S, Hu ZH, Zhang Z (2013) The redefinition of the ore-foming porphyry’s age in Gaerqiong skarn-type gold–copper deposit, western Bangong Lake–Nujiang River metallogenic belt, Xizang (Tibet). Geol Rev 59:193–200 (in Chinese with English abstract) Google Scholar
  58. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280CrossRefGoogle Scholar
  59. Zhang Z, Yao XF, Tang JX, Li ZJ, Wang LQ, Yang Y, Duan JL, Song JL, Lin X (2015) Lithogeochemical, Re-Os and U-Pb geochronological, Hf-Lu and S-Pb isotope data of the Ga’erqiong-Galale Cu-Au ore-concentrated area: evidence for the Late Cretaceous magmatism and metallogenic event in the Bangong-Nujiang suture zone, northwestern Tibet, China. Resour Geol 65:76–102CrossRefGoogle Scholar
  60. Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS, Wu FY (2009) Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa terrane, Tibet. Chem Geol 268:298–312CrossRefGoogle Scholar
  61. Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • MingJian Cao
    • 1
    • 2
  • KeZhang Qin
    • 1
    • 3
  • GuangMing Li
    • 1
    • 3
  • Noreen J. Evans
    • 2
  • Brent I.A. McInnes
    • 2
  • JinXiang Li
    • 3
    • 4
  • JunXing Zhao
    • 1
  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.John de Laeter Center/TIGeR/Applied GeologyCurtin UniversityPerthAustralia
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations