Mineralium Deposita

, Volume 53, Issue 3, pp 353–376 | Cite as

Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U ± Ag) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada

  • P. Acosta-Góngora
  • S.A. Gleeson
  • I.M. Samson
  • L. Corriveau
  • L. Ootes
  • S.E. Jackson
  • B.E. Taylor
  • I. Girard


The Great Bear Magmatic Zone, in northwest Canada, contains numerous polymetallic mineral occurrences, prospects, and deposits of the iron oxide copper-gold deposit (IOCG) family. The mineralization is hosted by the Treasure Lake Group and igneous rocks of the Great Bear arc and was deposited concomitantly with the arc magmatism (ca. 1.88 to 1.87 Ga). In situ δ 34S (n = 48) and δ 65Cu (n = 79) analyses were carried out on ore-related sulfides from a number of these systems. The δ 34S values mainly vary between 0 and +5‰, consistent with derivation of sulfur from the mantle. Lower δ 34S values (−7.7 to +1.4‰) from the Sue-Dianne breccia may indicate SO2 disproportionation of a magmatic hydrothermal fluid. The δ 65Cu values vary between −1.2 and −0.3‰, and are lower than the igneous δ 65Cu range of values (0.0 ± 0.27‰). The S and Cu isotopic data are decoupled, which suggests that Cu (and possibly some S) was dissolved and remobilized from supracrustal rocks during early stages of alteration (e.g., sodic alteration) and then precipitated by lower temperature, more oxidizing fluids (e.g., Ca-Fe-K alteration). A limited fluid inclusion dataset and δ 13C and δ 18O values are also presented. The δ 18Ofluid values are consistent with a magmatic origin or a host-rock equilibrated meteoric water source, whereas the δ 13Cfluid values support a marine carbonate source. Combined, the S and Cu isotopic data indicate that while the emplacement of the Great Bear magmatic bodies may have driven fluid convection and may be the source of fluids and sulfur, metals such as Cu could have been recycled from crustal sources.


Great Bear Magmatic Zone Iron oxides Copper Gold Metal sources Copper isotopes 



The present contribution is part of the IOCG-Great Bear region project of the Geomapping for Energy and Minerals Program, sponsored by the Geological Survey of Canada (Natural Resources Canada; contribution number 32072), and the South Wopmay Bedrock Mapping Project of the Northwest Territories Geological Survey (Contribution 0086). Collaborative research agreements among the Community Government of Gamèti, Natural Resources Canada, and Fortune Minerals Limited supported this research project as well as Aurora Research Institute NWT Science Licenses 14548 and 14649.

The authors also acknowledge the financial support provided by the Research Associate Program of Natural Resources Canada Earth Science Sector to Pedro Acosta-Góngora. Supplementary financial aid was obtained from the Natural Sciences and Engineering Research Council Discovery grants awarded to Sarah A. Gleeson and Iain M. Samson. Also, the authors thank Dr. Jeremy Richards (University of Alberta) for allowing us to use the fluid inclusion facilities and providing important input on the interpretation of analytical data. In addition, we thank Drs. Thomas Chacko (University of Alberta), Dan Marshall (Simon Fraser University), and Clare Currie (University of Alberta) for their thorough reviews of an earlier version of this paper. Finally, we acknowledge two anonymous reviewers, and Drs. Christoph Gauert and Joseph Magnall, and Associate Editor Frank Melcher as their thorough comments greatly improved the quality of this manuscript.

Compliance with ethical standards

The present study was entirely funded by the Canadian Government, and mostly under the Geomapping for Energy and Minerals Program (GEM I; Natural Resources Canada/Geological Survey of Canada) and the South Wopmay Bedrock Mapping Project (Northwest Territories Geoscience Office, NTGO). Supplementary funding given by the Canadian federal government was sourced from the Research Associate Program of Natural Resources Canada (RAP; Earth Science Sector Contribution 20130173) grant awarded to Pedro Acosta-Góngora and the Natural Sciences and Engineering Research Council Discovery grants awarded to Sarah A. Gleeson and Iain M. Samson.

Conflict of interest

Therefore, the authors declare that they have no conflict of interest.

Supplementary material

126_2017_736_MOESM1_ESM.xlsx (24 kb)
ESM 1 (XLSX 24 kb)


  1. Acevedo A, Kyser TK (2015) Fe isotopic composition of alteration minerals from McArthur River zone 4 deposit, Athabasca Basin, Saskatchewan. In: Potter EG, Wright DM (eds) Targeted Geoscience initiative 4: unconformity-related uranium systems, (eds); geological Survey of Canada. Geol Surv can open file, vol 7791, pp 61–73. doi: 10.4095/295776 Google Scholar
  2. Acosta-Góngora P, Gleeson SA, Ootes L, Jackson VA, Lee MD, Samson IM (2011) Preliminary observations on the IOCG mineralization at the DAMP, fab, and Nori showings and Terra-Norex mines, Great Bear magmatic zone. NTGO open file 2011-01:11Google Scholar
  3. Acosta-Góngora P, Gleeson SA, Samson IM, Ootes L, Corriveau L (2014) Trace elements in magnetite and its relationship to cu-bi-co-au-ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada. Econ Geol 109:1901–1928. doi: 10.2113/econgeo.109.7.1901 CrossRefGoogle Scholar
  4. Acosta-Góngora P, Gleeson SA, Samson IM, Ootes L, Corriveau L (2015a) Gold refining by bismuth melts at the iron oxide dominated NICO au-co-bi±cu±W deposit, NWT, Canada. Econ Geol 110:291–314. doi: 10.2113/econgeo.110.2.291 CrossRefGoogle Scholar
  5. Acosta-Góngora P, Gleeson SA, Samson IM, Corriveau L, Ootes L, Taylor BE, Creaser RA (2015b) The Paleoproterozoic NICO iron-oxide-cobalt-gold-bismuth deposit, northwest Territories, Canada: evidence from isotope geochemistry and fluid inclusions Canada. Precam Res 268:168–193. doi: 10.1016/j.precamres.2015.06.007 CrossRefGoogle Scholar
  6. Asael D, Matthews A, Bar-Matthews M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem Geol 243:238–254. doi: 10.1016/j.chemgeo.2007.06.007 CrossRefGoogle Scholar
  7. Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kuperschiefer and Timna ore deposits. Chem Geol 262:147–158. doi: 10.1016/j.chemgeo.2009.01.015 CrossRefGoogle Scholar
  8. Azar B (2007) The lithogeochemistry of volcanic and subvolcanic rocks of the FAB Lake area, Great Bear magmatic zone, Northwest Territories, Canada. Dissertation, University of TorontoGoogle Scholar
  9. Badham JPM, Stanworth CW (1977) Evaporites from the Proterozoic of the east arm, Great Slave Lake. Nature 268:516–518. doi: 10.1038/268516a0 CrossRefGoogle Scholar
  10. Baker T, Perkins C, Blake KL, Williams PJ (2001) Radiogenic and stable isotope constraints on the genesis of the Eloise Cu-Au deposit, Cloncurry district, northwest Queensland. Econ Geol 96:723–742. doi: 10.2113/gsecongeo.96.4.723 Google Scholar
  11. Barton MD (2014) Iron oxide-(-Cu-Au-REE-P-Ag-U-Co) systems. In: Turekian K, Holland H, Scott SD (eds) Treatise on geochemistry, vol 13, 2nd edn. Elsevier, New York, pp 515–541CrossRefGoogle Scholar
  12. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide-(REE-cu-au-U) mineralization. Geol 24:259–262. doi: 10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2 CrossRefGoogle Scholar
  13. Bastrakov EN, Skirrow RG, Davidson GJ (2007) Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam District, Gawler Craton, South Australia. Econ Geol 102:1415–1440. doi: 10.2113/gsecongeo.102.8.1415 CrossRefGoogle Scholar
  14. Beaudoin G, Taylor BE (1994) High precision and spatial resolution sulfur analysis using MILES laser mircroprobe. Geochim Cosmochim Acta 58:5055–5063. doi: 10.1016/0016-7037(94)90231-3 CrossRefGoogle Scholar
  15. Belogub EV, Novoselov KA, Yakovleva VA, Spiro B (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the south Urals. Ore Geol Rev 33:239–254. doi: 10.1016/j.oregeorev.2006.03.008 CrossRefGoogle Scholar
  16. Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Manto Verde iron-oxide-copper-gold district, III Región, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440. doi: 10.2113/gsecongeo.102.3.415 CrossRefGoogle Scholar
  17. Bennett V, Rivers T (2006) U-Pb ages of zircon primary crystallization and inheritance for magmatic rocks of the southern Wopmay orogen, northwest Territories. NTGO open file 2006-006:65Google Scholar
  18. Bishop MC, Moyner F, Weinstein C, Fraboulet JG, Wang K, Foriel J (2012) The cu isotopic composition of iron meteorites. Meteor Planet Sci 47:268–276. doi: 10.1111/j.1945-5100.2011.01326.x CrossRefGoogle Scholar
  19. Bowring SA (1984) U-Pb zircon geochronology of Early Proterozoic Wopmay orogen, N.W.T. Canada: an example of rapid crustal evolution. Dissertation, University of KansasGoogle Scholar
  20. Bowring SA, Grotzinger JP (1992) Implications of new chronostratigraphy for tectonic evolution of Wopmay orogen, northwest Canadian Shield. Amer J Sci 292:1–20CrossRefGoogle Scholar
  21. Camier WJ (2002) Geology of the Sue-Dianne Proterozoic Cu-Ag-Fe oxide breccia complex, Mazenod Lake district, Northwest Territories. Dissertation, University of Western OntarioGoogle Scholar
  22. Changkakoti A, Morton RD, Gray J (1986) Hydrothermal environments during the genersis of silver deposits in the Northwest Territories of Canda: evidence from fluid inclusions. Min Dep 21:63–69. doi: 10.1007/BF00204364 CrossRefGoogle Scholar
  23. Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067. doi: 10.1029/JB077i017p03057 CrossRefGoogle Scholar
  24. Cooke DR, Hollings P, Wilkinson JJ, Tosdal RM (2014) Geochemistry of porphyry deposits. In: Turekian KK, Holland HD, Scott SD (eds) Treatise of geochemistry, vol 13, 2nd edn. Elsevier, New York, pp 357–381. doi: 10.1016/B978-0-08-095975-7.01116-5 CrossRefGoogle Scholar
  25. Corriveau L, Mumin AH, Setterfield T (2010a) IOCG environments in Canada: characteristics, geological vectors to ore and challenges. Hydrothermal iron oxide copper-gold and related deposits: a global perspective-advances in the understanding of IOCG deposits, vol 3. PGC Publishing, Adelaide, pp 311–343Google Scholar
  26. Corriveau L, Williams PJ, Mumin AH (2010b) Alteration vectors to IOCG mineralization from uncharted terranes to deposits. In: Corriveau L and Mumin AH (eds), Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geol Assoc of Can Short Course 20:89–110Google Scholar
  27. Corriveau L, Montreuil JF, Potter E (2016) Alteration facies linkages among iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the Great Bear Magmatic Zone, Northwest Territories, Canada. Econ Geol 111:2045–2072. doi: 10.2113/econgeo.111.8.2045 CrossRefGoogle Scholar
  28. Davis W, Corriveau L, van Breemen O, Bleeker W, Montreuil JF, Potter E, and Pelleter E., (2011) Timing of IOCG mineralizing and alteration events within the Great Bear magmatic zone. Yellowknife Geoscience Forum, 39th, Yellowknife, Canada, 15th–17th November 2011. Abstracts, pp 97Google Scholar
  29. Davis WJ, Ootes L, Newton L, Jackson VA, Stern RA (2015) Characterization of the Paleoproterozoic Hottah terrane, Wopmay Orogen using multi-isotopic (U–Pb, Hf and O) detrital zircon analyses: an evaluation of linkages to northwest Laurentian Paleoproterozoic domains. Precam Res 269:296–310. doi: 10.1016/j.precamres.2015.08.012 CrossRefGoogle Scholar
  30. De Haller A, Fontboté L (2009) The Raúl-Condestable iron oxide copper-gold deposit, central coast of Peru: ore related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Econ Geol 104:365–384. doi: 10.2113/gsecongeo.104.3.365 CrossRefGoogle Scholar
  31. Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38:1147–1164. doi: 10.1016/0016-7037(74)90010-6 CrossRefGoogle Scholar
  32. Gamo T, Okamura K, Charlou JL, Urabe T, Auzende JM, Ishibashi J, Shitashima K, Chiba H (1997) Acidic and sulfate-rich hydrothermal fluids from back-arc basin, Papua New Guinea. Geol 25:139–142. doi: 10.1130/0091-7613(1997)025<0139:AASRHF>2.3.CO;2 CrossRefGoogle Scholar
  33. Gandhi SS (1988) Volcano-plutonic setting of U-cu bearing magnetite veins of FAB claims, southern Great Bear magmatic zone, northwest Territories. Geol Surv Can Pap 88-1C:177–187Google Scholar
  34. Gandhi SS (1989) Rhyodacite ignimbrites and breccias of the sue-Dianne and mar cu-Fe-U deposits, southern Great Bear magmatic zone, northwest Territories. Geol Surv Can Pap 89-1C:263–273Google Scholar
  35. Gandhi SS (1994) Geological setting and genetic aspects of mineral occurrences in the southern Great Bear magmatic zone, Northwest Territories. In: Sinclair WD, Richardson DG (eds) Studies of rare-metal deposits in the Northwest Territories. Geol Surv Can Bull 475:63–96Google Scholar
  36. Gandhi SS, Prasad N (1993) Regional metallogenic significance of the cu, Mo, and U occurrences at the DeVries Lake, southern Great Bear magmatic zone, northwest Territories. Geol Surv Can Pap 93-1C:29–39Google Scholar
  37. Gandhi SS, Prasad N (1995) Geological setting of bode copper and Damp polymetallic prospects, central Great Bear magmatic zone, northwest Territories. NTGO open file 1995-C:201–212Google Scholar
  38. Gandhi SS, van Breemen O (2005) SHRIMP U–Pb geochronology of detrital zircons from the Treasure Lake group-new evidence for Paleoproterozoic collisional tectonics in the southern Hottah terrane, northwestern Canadian Shield. Can J Earth Sci 42:833–845. doi: 10.1139/e05-021 CrossRefGoogle Scholar
  39. Gandhi SS, Mortensen JK, Prasad N, van Breemen O (2001) Magmatic evolution of the southern Great Bear continental arc, northwestern Canadian Shield: geochronological constraints. Can J Earth Sci 38:767–785. doi: 10.1139/e00-094 CrossRefGoogle Scholar
  40. Gleeson SA, Smith MP (2009) The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: constraints from stable Cl isotopes of fluid inclusion leachates. Geochim Cosmochim Acta 73:5658–5672. doi: 10.1016/j.gca.2009.06.005. h CrossRefGoogle Scholar
  41. Goad RE, Mumin AH, Duke NA, Neale KL, Mulligan DL, Camier WJ (2000) The NICO and Sue-Dianne Proterozoic, iron oxide-hosted, polymetallic deposits, Northwest Territories: application of the Olympic Dam model in exploration. Explor Mining Geol 9:123–140. doi: 10.2113/0090123 CrossRefGoogle Scholar
  42. Goldstein RH (2003) Petrographic analysis of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Can short course handb 32:9–53Google Scholar
  43. Graham S, Pearson N, Jackson S, Griffin W, O’Reilly SY (2004) Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem Geol 207:147–169. doi: 10.1016/j.chemgeo.2004.02.009 CrossRefGoogle Scholar
  44. Haynes FM (1985) Determination of fluid inclusion compositions by sequential freezing. Econ Geol 80:1436–1439. doi: 10.2113/gsecongeo.80.5.1436 CrossRefGoogle Scholar
  45. Hayward N, Corriveau L (2014) Fault reconstructions using aeromagnetic data in the Great Bear magmatic zone, Northwest Territories, Canada. Can J Earth Sci 51:927–942. doi: 10.1139/cjes-2014-0035 CrossRefGoogle Scholar
  46. Hennessey T, Putrich E. (2008) New resource estimate for Sue-Dianne copper-silver deposit. Accessed 24 January 2013
  47. Hildebrand RS, Hoffman PF, Bowring SA (1987) Tectono-magmatic evolution of the 1.9-Ga Great Bear magmatic zone, Wopmay orogen, northwestern Canada. J Volcanol Geotherm Res 32:99–118. doi: 10.1016/0377-0273(87)90039-4 CrossRefGoogle Scholar
  48. Hildebrand RS, Hoffman PF, Bowring SA (2010) The Calderian orogeny in Wopmay orogen (1.9 Ga), northwestern Canadian Shield. Bull Geol Soc Amer 122:794–814. doi: 10.1130/B26521.1 CrossRefGoogle Scholar
  49. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of proterozoic iron oxide (Cu–U–Au–REE) deposits. Precam Res 58:241–287. doi: 10.1016/0301-9268(92)90121-4 CrossRefGoogle Scholar
  50. Hoffman PF, Bowring SA, Buchwaldt R, Hildebrand RS (2011) Birthdate for the Coronation paleocean: age of initial rifting in Wopmay orogen, Canada. Can J Earth Sci 48:281–293. doi: 10.1139/E10-038 CrossRefGoogle Scholar
  51. Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Econ Geol 107:1489–1497. doi: 10.2113/econgeo.107.7.1489 CrossRefGoogle Scholar
  52. Jackson VA (2008) Preliminary geologic map of part of the southern Wopmay orogen (parts of NTS 86B and 86C; 2007updates); descriptive notes to accompany 1:100,000 scale map. NTGO open file 2008–007, 1 mapGoogle Scholar
  53. Jackson SE, Günther D (2003) The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively plasma spectrometry. J Anal At Spectrom 18:205–212. doi: 10.1039/B209620J CrossRefGoogle Scholar
  54. Jackson VA, van Breemen O, Ootes L, Bleeker W, Bennett V, Davis WJ (2013) U-Pb zircon ages and field relationships of Archean basement and Paleoproterozoic intrusions, south-central Wopmay Orogen, NWT: implications for tectonic assignments. Can J Earth Sci 50:979–1006. doi: 10.1139/cjes-2013-0046 CrossRefGoogle Scholar
  55. Johnson CA, Bookstrom AA, Slack JF (2012) Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho Cobalt belt. Econ Geol 107:1207–1221. doi: 10.1130/0091-7613(1994)022<0873:POOHSV>2.3.CO;2 CrossRefGoogle Scholar
  56. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. doi: 10.1016/S0016-7037(97)00169-5 CrossRefGoogle Scholar
  57. Kuhn HR, Pearson NJ, Jackson SE (2007) The influence of the laser ablation process on isotopic fractionation of copper in LA-MC-ICP-MS. J Anal At Spectrom 22:547–552. doi: 10.1039/B616232K CrossRefGoogle Scholar
  58. Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chem Geol 201:337–350. doi: 10.1016/j.chemgeo.2003.08.006 CrossRefGoogle Scholar
  59. Li WQ, Jackson SE, Pearson NJ, Alard O, Chappell BW (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49. doi: 10.1016/j.chemgeo.2008.06.047 CrossRefGoogle Scholar
  60. Li W, Jackson SE, Pearson NJ, Graham S (2010) Copper isotopic zonation in the Northpakes porphyry Cu-Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096. doi: 10.1016/j.gca.2010.04.003 CrossRefGoogle Scholar
  61. Luck JM, Othman DB, Barrat JA, Albarède F (2003) Coupled 63Cu and 16O excesses in chondrites. Geochim Cosmochim Acta 67:143–151. doi: 10.1016/S0016-7037(02)01038-4 CrossRefGoogle Scholar
  62. Maher KC, Jackson S, Mountain B (2011) Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250°C and 300°C. Chem Geol 286:229–239. doi: 10.1016/j.chemgeo.2011.05.008 Google Scholar
  63. Markl G, Lahaye Y, Schwinn G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228. doi: 10.1016/j.gca.2006.06.1369 CrossRefGoogle Scholar
  64. Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu-Au(−Zn-Ag) deposits, Chile. Econ Geol 96:1799–1826. doi: 10.2113/gsecongeo.96.8.1799 Google Scholar
  65. Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246. doi: 10.1016/j.gca.2005.06.022 CrossRefGoogle Scholar
  66. Mathur R, Ruiz J, Casselman MJ, Megaw P, van Egmond R (2012) Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Cañarico Norte porphyry copper deposit, Northern Peru. Miner Depos 47:755–762. doi: 10.1007/s00126-012-0439-y CrossRefGoogle Scholar
  67. Montreuil JF, Potter EG, Corriveau L, Davis WJ (2016a) Element mobility patterns in magnetite-group IOCG systems: the Fab IOCG system, Northwest Territories, Canada. Ore Geol Rev 72:562–584. doi: 10.1016/j.oregeorev.2015.08.010
  68. Monteuil JF, Corriveau L, Potter EG, De Toni A (2016b) On the relationship between alteration facies and metal endowment of iron oxide-alkali-altered systems, southern Great Bear magmatic zone (Canada). Econ Geol 111:2139–2168CrossRefGoogle Scholar
  69. Montreuil JF, Corriveau L, Grunsky E (2013) A compositional data analysis of IOCG systems, Great Bear magmatic zone, Canada: to each alteration types its own geochemical signature: Geochem. Explor Environ Anal 13:229–247. doi: 10.1144/geochem2011-101 CrossRefGoogle Scholar
  70. Montreuil JF, Corriveau L, Potter E (2015) Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Beat magmatic zone, Northwest Territories, Canada. Miner Depos 50:293–325. doi: 10.1007/s00126-014-0530-7 CrossRefGoogle Scholar
  71. Mumin AH, Corriveau L, Somarin AK, Ootes L (2007) Iron oxide copper-gold-type polymetallic mineralization in the Contact Lake belt, Great Bear magmatic zone, Northwest Territories, Canada. Explor Mining Geol 16:187–208. doi: 10.2113/gsemg.16.3-4.187 CrossRefGoogle Scholar
  72. Mumin AH, Somarin AK, Jones B, Corriveau L, Ootes L, Camier J. (2008) The IOCG - porphyry - epithermal continuum in the Great Bear Magmatic Zone, Northwest Territories, Canada Exploring for iron oxide copper-gold deposits: Canada and global analogues In: Corriveau L and Mumin AH (eds), Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geol Assoc of Can Short Course 20:59–78Google Scholar
  73. Ootes L, Goff S, Jackson VA, Gleeson SA, Creaser RA, Samson IM, Evensen N, Corriveau L, Mumin AH (2010) Timing and thermochemical constraint on multi-element mineralization at the Nori/RA Cu-Mo-U prospect, Great Bear magmatic zone, Northwest Territories, Canada. Miner Depos 45:549–566. doi: 10.1007/s00126-010-0291-x CrossRefGoogle Scholar
  74. Ootes L, Davis WJ, Jackson V, van Breemen O (2015) Chronostratigraphy of the Hottah terrane and Great Bear magmatic zone, Wopmay Orogen, northwest Canadian Shield, and exploration of a Paleoproterozoic terrane translation model. Can J Earth Sci 52:1062–1092. doi: 10.1139/cjes-2015-0026 CrossRefGoogle Scholar
  75. Ootes L, Snyder D, Davis WJ, Acosta-Góngora P, Corriveau L, Mumin AH, Gleeson S, Samson IM, Montreuil JF, Potter E, Jackson VA (2016) A Paleoproterozoic Andean-type iron oxide-copper-gold environment, the Great Bear magmatic zone, Northwest Canada. Ore Geol Rev. doi: 10.1016/j.oregeorev.2016.09.024 Google Scholar
  76. Oreskes N, Einaudi MT (1990) Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluids inclusions and stable isotopes. Econ Geol 87:64–90. doi: 10.2113/gsecongeo.87.1.64 CrossRefGoogle Scholar
  77. Potter EG, Montreuil JF, Corriveau L, DeToni A (2013) Geology and hydrothermal alteration of the Fab Lake region, Northwest Territories. Geol Surv Can open file 7339:26Google Scholar
  78. Potter EG, Sharpe R, Girard I, Fayek M, Gammon P, Quirt D, Robbins J (2015) Fe and Mg signatures of the bong uranium deposit, Thelon Basin, Nunavut, in: EG Potter and DM Wright (eds), Targeted Geoscience Initiative 4: unconformity-related uranium systems. Geol Surv Can open file 7791:52–60. doi: 10.4095/295776 Google Scholar
  79. Puritch E, Ewert W, Armstrong T, Brown F, Orava D, Pearson JL, Hayes T, Duggan T, Holmes G, Uceda D, Sumners W, Mackie D, Rougier M, Bocking K, Mezei A, Horne B (2012) NI 43–101, technical report no. 247, prepared for fortune minerals ltd. 2012. Technical report and updated mineral reserve estimate and front-end Engineering and design (FEED) study on the NICO gold–cobalt–bismuth–copper deposit, Mazenod Lake area. Northwest Terri-tories, Canada, p 307Google Scholar
  80. Rempel KU, Liebscher A, Meixner A, Romer RL, Heinrich W (2012) An experimental study of the elemental and isotopic fractionation of copper between aqueous vapor and liquid to 450°C and 400 bar in the CuCl-NaCl-H2O and CuCl-NaHS-NaCl-H2O systems. Geochim Cosmochim Acta 94:199–216. doi: 10.1016/j.gca.2012.06.028 CrossRefGoogle Scholar
  81. Rieger A, Marschik R, Diaz M, Holzl S, Chiaradia M, Akker B, Spangemberg J (2010) The hypogene iron oxide copper-gold mineralization in the Mantoverde district, Northern Chile. Econ Geol 105:1271–1299. doi: 10.2113/econgeo.105.7.1271 CrossRefGoogle Scholar
  82. Robinson BW (1971) Studies on the Echo Bay silver deposit, NWT. Dissertation, University of AlbertaGoogle Scholar
  83. Robinson BW, Badham JPN (1974) Stable isotope geochemistry and the origin of the Great Bear Lake Silver deposits, Northwest Territories, Canada. Can J Earth Sci 11:698–711. doi: 10.1139/e74-068 CrossRefGoogle Scholar
  84. Robinson BW, Ohmoto H (1973) Mineralogy, fluid inclusions and stable isotopes of Echo Bay, U-Ni-Ag-Cu deposits, Northwest Territories, Canada. Econ Geol 068:635–656. doi: 10.2113/gsecongeo.68.5.635 CrossRefGoogle Scholar
  85. Roedder E (1984) Fluid inclusions. Mineralogical Society of America, VirginiaGoogle Scholar
  86. Rouxel O, Fouquet Y, Ludden JN (2004) Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev seafloor hydrothermal fields on the Mid-Atlantic Ridge. Econ Geol 99:585–600. doi: 10.2113/gsecongeo.99.3.585 CrossRefGoogle Scholar
  87. Rusk B, Oliver N, Cleverley J, Blenkinsop T, Zhang D, Williams P, Habermann P (2010) Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOGC genesis. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold & Related Deposits: a global perspective - advances in the understanding of IOCG deposits. Global perspective series, vol 3. PGC Publishing, Adelaide, pp 201–218Google Scholar
  88. Rusk B, Emsbo P, Xavier R, Corriveau L, Oliver N, Zhang D (2015) A comparison of fluid origins and compositions in iron oxide–copper–gold and porphyry–cu(Mo–au) deposits. Pacific Rim Congress, Hong Kong, 18-21 March, Abstracts, pp 1–9CrossRefGoogle Scholar
  89. Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, LondonGoogle Scholar
  90. Sidor M (2000) The origin of the black rock alteration overprinting iron-rich sediments and its genetic relationship to disseminated polymetallic sulfide ores, Lou Lake, Northwest Territories, Canada. Dissertation, University Western OntarioGoogle Scholar
  91. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Miner Depos 38:787–812CrossRefGoogle Scholar
  92. Skirrow R, Walshe J (2002) Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creej Inlier, Australia: an integrated geologic and chemical model. Econ Geol 97:1167–1202. doi: 10.2113/gsecongeo.97.6.1167 CrossRefGoogle Scholar
  93. Soloviev SG (2010) Iron oxide copper–gold and related mineralization of the Siberian Craton, Russia: I-iron oxide deposits in the Angara and Ilim river basins, southcentral Siberia. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective-advances in the understanding of IOCG deposits, 4rth vol. PGC Publishing, Adelaide, pp 495–514Google Scholar
  94. Somarin AK, Mumin AH (2014) P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake, Northwest Territories, Canada. Miner Depos 49:199–215. doi: 10.1007/s00126-013-0482-3 CrossRefGoogle Scholar
  95. Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim Cosmochim Acta 5:21–40. doi: 10.1016/j.gca.2010.10.002 CrossRefGoogle Scholar
  96. Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1005. doi: 10.1016/0016-7037(88)90254-2 CrossRefGoogle Scholar
  97. Taylor BE (1987) Stable isotope geochemistry of ore-forming fluids. In: Kyser TK (ed) Short course in stable isotope geochemistry of low temperature fluids. Miner Assoc Can 13:337–445Google Scholar
  98. Taylor BE (2004) Biogenic and thermogenic sulfate reduction in the Sullivan Pb-Zn-Ag deposit, British Columbia (Canada): evidence from microiscotopic analysis of carbonate and sulfide in bedded ores. Chem Geol 204:215–236. doi: 10.1016/j.chemgeo.2003.11.011 CrossRefGoogle Scholar
  99. Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver HS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist W, Thompson JFH, Goldfarb RJ, Richards JP (eds) One hundredth anniversary economic geology special volume. Society of Economic Geologists, Denver, pp 371–409Google Scholar
  100. Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263. doi: 10.1016/0012-821X(93)90243-3 CrossRefGoogle Scholar
  101. Zhu XK, O’Nions RK, Guo Y, Belshaw NS, Rickard D (2000) Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chem Geol 163:139–149. doi: 10.1016/S0009-2541(99)00076-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • P. Acosta-Góngora
    • 1
    • 2
  • S.A. Gleeson
    • 1
    • 3
  • I.M. Samson
    • 4
  • L. Corriveau
    • 5
  • L. Ootes
    • 6
    • 7
  • S.E. Jackson
    • 2
  • B.E. Taylor
    • 2
  • I. Girard
    • 2
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Natural Resources Canada/Geological Survey of CanadaOttawaCanada
  3. 3.Helmholtz Center Potsdam, Deutches GeoForschungsZentrumPotsdamGermany
  4. 4.Department of Earth and Environmental SciencesUniversity of WindsorWindsorCanada
  5. 5.Natural Resources Canada/Geological Survey of CanadaQuébecCanada
  6. 6.Northwest Territories Geological SurveyYellowknifeCanada
  7. 7.British Columbia Geological SurveyStn Prov Govt VictoriaCanada

Personalised recommendations