Skip to main content

Advertisement

Log in

Mineralogical and isotopic characterization of graphite deposits from the Anatectic Complex of Toledo, central Spain

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of −20.5 to −27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aparicio A (1971) Estudio geológico del Macizo Cristalino de Toledo. Est Geol 27:361–414

    Google Scholar 

  • Baiju KR, Satish-Kumar M, Kagi H, Nambiar CG, Ravinsankar M (2005) Mineralogical characterization of graphite deposits from Thodupuzha-Kanjirappally Belt, Madurai Granulite Block, Southern India. Gond Res 8:223–230

    Article  Google Scholar 

  • Barbero L (1992) Plutonismo sin-orogénico en un área granulítica Hercínica: El Complejo Anatéctico de Toledo. University Complutense of Madrid, Doctoral dissertation

    Google Scholar 

  • Barbero L (1995) Granulite-facies metamorphism in the Anatectic Complex of Toledo, Spain: late Hercynian tectonic evolution by crustal extension. J Geol Soc London 152:365–382

    Article  Google Scholar 

  • Barbero L, Rogers G (1999) Implications of U-Pb monazite ages from synorogenic granites of the anatectic complex of Toledo (Spain) in the evolution of the central part of the Hercynian Iberian Belt. Doc BRGM 290:203

    Google Scholar 

  • Barbero L, Villaseca C (1992) The Layos granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area. Trans Roy Soc Edinburgh: Earth Sci 83:127–138

    Article  Google Scholar 

  • Barbero L, Villaseca C (2004) El macizo de Toledo. In: Vera JA (ed) Geología de Geología de España. SGE-IGME, Madrid, pp 110–115

    Google Scholar 

  • Barbero L, Villaseca C, Rogers G, Brown P (1995) Geochemical and isotopic disequilibrium in crustal melting: an insight from the anatectic granitoids from Toledo, Spain. J Geophys Res 100:15745–15765

    Article  Google Scholar 

  • Barrenechea JF, Luque FJ, Millward D, Ortega L, Beyssac O, Rodas M (2009) Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contr Mineral Petrol 158:37–51

    Article  Google Scholar 

  • Beyssac O, Lazzeri M (2012) Application of Raman spectroscopy to the study of graphitic carbons in the earth sciences. European Mineralogical Union Notes in Mineralogy 12:451–454

    Google Scholar 

  • Beyssac O, Rumble D (2014) Graphitic carbon: a ubiquitous, diverse, and useful geomaterial. Elements 10:415–420

    Article  Google Scholar 

  • Beyssac O, Coffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metam Geol 20:859–871

    Article  Google Scholar 

  • Beyssac O, Goffé B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 59:2267–2276

    Article  Google Scholar 

  • Buseck PR, Beyssac O (2014) Graphitic carbon: from organic matter to graphite: graphitization. Elements 10:421–426

    Article  Google Scholar 

  • Castiñeiras P, Villaseca C, Barbero L, Martín Romera C (2008) SHRIMP U-Pb zircon dating of anatexis in high-grade migmatite complexes of central Spain: implications in the Hercynian evolution of central Iberia. Int J Earth Sci 98:1609–1624

    Google Scholar 

  • Cesare B, Maineri C (1999) Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite. Contr Mineral Petrol 134:41–52

    Article  Google Scholar 

  • Crespo E, Luque J, Fernández-Rodríguez C, Rodas M, Díaz-Azpiroz M, Fernández-Caliani JC, Barrenechea JF (2004) Significance of graphite occurrence in the Aracena Metamorphic Belt, Iberian Massif. Geol Mag 141:687–697

    Article  Google Scholar 

  • Crespo E, Luque J, Barrenechea JF, Rodas M (2005) Mechanical graphite transport in fault zones and the formation of graphite veins. Mineral Mag 69:463–470

    Article  Google Scholar 

  • Crespo E, Luque J, Rodas M, Wada H, Gervilla F (2006) Graphite-sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks. Gond Res 9:279–290

  • Gálvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvosin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477

    Article  Google Scholar 

  • Grey IE, Li C (2003) Hidroxylian pseudorutile derived from picroilmenite in the Murray Basin, Southeastern Australia. Mineral Mag 67:733–747

    Article  Google Scholar 

  • Grey IE, Li C, Watts JA (1983) Hydrothermal synthesis of goethite-rutile intergrowth structures and their relationship to pseudorutile. Am Mineral 68:981–988

    Google Scholar 

  • Herrero MJ, Martín-Pérez A, Alonso-Zarza AM, Gil-Peña I, Meléndez A, Martín García R (2011) Petrography and geochemistry of the magnesites and dolostones of the Ediacaran Ibor Group (635 to 542 Ma), Western Spain: evidences of their hydrothermal origin. Sedim Geol 240:71–84

    Article  Google Scholar 

  • IGME (1995). Exploración del grafito en España. Centro de Documentación IGME, n° 11415, (unpublished document) Madrid.

  • James HL (1966) Chemistry of the iron-rich sedimentary rocks. Data of Geochemistry, Geol Survey Prof Paper 440, 66 pp

  • Kretz R (1983) Symbols for rock-forming minerals. Amer Mineral 68:277–279

    Google Scholar 

  • Lazzeri M, Barreiro A (2014) Graphitic carbon: carbon-based nanoscience. Elements 10:447–452

    Article  Google Scholar 

  • Luque FJ, Rodas M, Barrenechea JM, Galán Huertos E (1992) Yacimientos españoles de grafito. In: García Guinea J, Martínez Frías J (eds) Recursos minerales de España. CSIC, Madrid, pp 501–524

    Google Scholar 

  • Luque FJ, Pasteris JD, Wotapenka B, Rodas M, Barrenechea F (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanism of formation. Amer J Sci 298:471–498

    Article  Google Scholar 

  • Luque FJ, Crespo-Feo E, Barrenechea JF, Ortega L (2012) Carbon isotopes of graphite: implications on fluid history. Geos Frontiers 3:197–207

    Article  Google Scholar 

  • Luque FJ, Huizenga JM, Crespo E, Wada H, Ortega L, Barrenechea JF (2014) Vein graphite deposits: geological setting, origin and economic significance. Miner Deposita 49:261–277

    Article  Google Scholar 

  • Manning CE, Shock EL, Sverjensky DA (2013) The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints. Rev Mineral Geochem 75:109–148

    Article  Google Scholar 

  • Martín Parra LM, Gutiérrez Alonso G, Sánchez Carretero R, Contreras López E, Jorquera de Guindos A, Gracia Prieto FJ (2009) Mapa Geológico de España a escala 1:50.000, hoja n° 656 (Gálvez). IGME, Madrid

    Google Scholar 

  • Martín Romera C, Villaseca C, López-García JA, Boiron MC, Barbero L (2001) CO2-CH4-N2 Fluid inclusions in granulite-facies migmatites of Hercynian anatectic complexes of central Spain. XVI ECROFI, 287-289.

  • Nakamura Y, Ooashi K, Toyoshima T, Satish-Kumar M, Akai J (2014) Strain-induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan. J Struct Geol doi: 10.1016/j.jsg.2014.10.012

  • Orejana D, Villaseca C, Armstrom RA, Jeffries TE (2010) Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain. Lithos 124:103–116

    Article  Google Scholar 

  • Pasteris JD (1989) In situ analysis in geological thin-sections by laser Raman microprobe spectroscopy: a cautionary note. Applied Spectroscoy 43:567–570

    Article  Google Scholar 

  • Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicators of degree of metamorphism. Can Mineral 29:1–9

    Google Scholar 

  • Peters D (2011) Mineralogical and chemical characterization of alunita group minerals from hydrothermal veins of the Sultana mineralization/SE Spain. Dissertation, Johanes Gutenber-University Mainz, Institute of Geosciences.

  • Rodas M, Luque FJ, Barrenechea JF, Fernández-Caliani JC, Miras A, Fernández-Rodríguez C (2000) Graphite occurrences in the low-pressure/high-temperature metamorphic belt of Sierra de Aracena (southern Iberian Massif). Mineral Mag 64:801–814

    Article  Google Scholar 

  • Sánchez Carretero R, Contreras López E, Martín Parra L, Martínez-Salanova J, Gutiérrez Alonso G, Barbero L, Villaseca C (2009) Mapa geológico de España 1: 50 000, hoja n° 657 (Sonseca). IGME, Madrid

    Google Scholar 

  • Sánchez Ronda D (2013) Una aproximación a las nuevas formas alotrópicas del carbono y al beneficio del grafito en la provincia de Toledo. Graduate Dissertation, Universidad Politécnica, Almadén, p 224

    Google Scholar 

  • Sanyal P, Acharya BC, Bhattacharya SK, Sarkar A, Agrawal S, Bera MK (2009) Origin of graphite, and temperature of metamorphism in Precambrian Eastern Ghats Mobile Belt, Orissa, India: a carbon isotope approach. J Asian Earth Sci 36:252–260

    Article  Google Scholar 

  • Scherrer P (1918) Bestimmung der grösse un der inneren struktur von kolloidteilchen mittels Röngntgenstrahlen, nachrichten von der gesellschaft der wissenschaften. Göttingen Mathem Physik Klasse 2:98–100

    Google Scholar 

  • Shengelia DM, Akhvlediani RA, Ketskhoveli DN (1979) The graphite geothermometer. Dobkl Acad Nauk USSR 235:132–134

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington

    Google Scholar 

  • Touzain P, Balasooriya N, Bandaranayake K, Descolas-Gros C (2010) Vein graphite from the Bogala and Kahatacha-Kolongaha mines, Sri-Lanka: a possible origin. Canad Mineral 48:1373–1384

    Article  Google Scholar 

  • Villaseca C, Downes H, Pin C, Barbero L (1999) Nature and composition of the lower continental crust in Central Spain and the granulite-granite linkage: interferences from granulitic xenoliths. J Petrol 40:1465–1496

    Article  Google Scholar 

  • Villaseca C, Merino E, Oyarzun R, Orejana D, Pérez-Soba C, Chicharro E (2014) Contrasting chemical and isotopic signatures from Neoproterozoic metasediments in the Central-Iberian Zone of pre-Variscan Europe (Spain): implications for terrane analysis and early Ordovician magmatic belts. Precam Res 245:131–145

    Article  Google Scholar 

  • Wada H (1988) Microscale isotopic zoning in calcite and graphite crystals in marble. Nature 331:61–63

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Amer Mineral 78:533–557

    Google Scholar 

Download references

Acknowledgments

We acknowledge Alfredo Fernández Larios for his assistance with the electron microprobe analyses in the Centro Nacional de Microscopía Electrónica (UCM) and Alberto Jorge García for his micro-Raman assistance in the Museo de Ciencias Naturales (CSIC). We also extend thanks to Xavier Arroyo Rey (CAI-DRX-UCM) and Jesús Reyes and Begoña del Moral from the analytical laboratories of the IGME for their technical assistance. We extend thanks also to Jesús López Jerez for offering his sample of granulites and graphite-rich rocks around mining areas of the ACT. We would like to especially thank Maite García Vallés for her assistance in Raman data processing. We also thank Clemente Recio for his diligence in performing C isotope analyses in the Stable Isotope Laboratory of the Salamanca University. Finally, we thank to David Huston, to an anonymous reviewer and to the editor Bernd Lehmann for their comments that increased the quality of the work. This work is included in the objectives of, and supported by, the CGL2012-32822 project of the Ministerio de Economía y Competitividad of Spain and the 910492-UCM group. Finally, this study will be included in the metallogenetic database of the IGME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Martín-Méndez.

Additional information

Editorial handling: D. Huston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Méndez, I., Boixereu, E. & Villaseca, C. Mineralogical and isotopic characterization of graphite deposits from the Anatectic Complex of Toledo, central Spain. Miner Deposita 51, 575–590 (2016). https://doi.org/10.1007/s00126-015-0625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0625-9

Keywords

Navigation