Leptin production capacity determines food intake and susceptibility to obesity-induced diabetes in Oikawa–Nagao Diabetes-Prone and Diabetes-Resistant mice



Obesity caused by overeating plays a pivotal role in the development of type 2 diabetes. However, it remains poorly understood how individual meal size differences are determined before the development of obesity. Here, we investigated the underlying mechanisms in determining spontaneous food intake in newly established Oikawa–Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mice.


Food intake and metabolic phenotypes of ON-DP and ON-DR mice under high-fat-diet feeding were compared from 5 weeks to 10 weeks of age. Differences in leptin status at 5 weeks of age were assessed between the two mouse lines. Adipose tissue explant culture was also performed to evaluate leptin production capacity in vitro.


ON-DP mice showed spontaneous overfeeding compared with ON-DR mice. Excessive body weight gain and fat accumulation in ON-DP mice were completely suppressed to the levels seen in ON-DR mice by pair-feeding with ON-DR mice. Deterioration of glucose tolerance in ON-DP mice was also ameliorated under the pair-feeding conditions. While no differences were seen in body weight and adipose tissue mass when comparing the two mouse lines at 5 weeks of age, the ON-DP mice had lower plasma leptin concentrations and adipose tissue leptin gene expression levels. In accordance with peripheral leptin status, ON-DP mice displayed lower anorexigenic leptin signalling in the hypothalamic arcuate nucleus when compared with ON-DR mice without apparent leptin resistance. Explant culture studies revealed that ON-DP mice had lower leptin production capacity in adipose tissue. ON-DP mice also displayed higher DNA methylation levels in the leptin gene promoter region of adipocytes when compared with ON-DR mice.


The results suggest that heritable lower leptin production capacity plays a critical role in overfeeding-induced obesity and subsequent deterioration of glucose tolerance in ON-DP mice. Leptin production capacity in adipocytes, especially before the development of obesity, may have diagnostic potential for predicting individual risk of obesity caused by overeating and future onset of type 2 diabetes.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.



Arcuate nucleus




Epididymal white adipose tissue


High-fat diet


Oikawa–Nagao Diabetes-Prone


Oikawa–Nagao Diabetes-Resistant


Signal transducer and activator of transcription 3


  1. 1.

    Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387:1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X

    Article  Google Scholar 

  3. 3.

    Blundell JE, Macdiarmid JI (1997) Passive overconsumption. Fat intake and short-term energy balance. Ann N Y Acad Sci 827:392–407

    CAS  Article  Google Scholar 

  4. 4.

    Hetherington MM (2007) Individual differences in the drive to overeat. Nutr Bull 32:14–21. https://doi.org/10.1111/j.1467-3010.2007.00601.x

    Article  Google Scholar 

  5. 5.

    Llewellyn C, Wardle J (2015) Behavioral susceptibility to obesity: gene-environment interplay in the development of weight. Physiol Behav 152:494–501. https://doi.org/10.1016/j.physbeh.2015.07.006

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Waalen J (2014) The genetics of human obesity. Transl Res 164:293–301. https://doi.org/10.1016/j.trsl.2014.05.010

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nagao M, Asai A, Kawahara M et al (2012) Selective breeding of mice for different susceptibilities to high fat diet-induced glucose intolerance: development of two novel mouse lines, selectively bred diet-induced glucose intolerance-prone and -resistant. J Diabetes Investig 3:245–251. https://doi.org/10.1111/j.2040-1124.2011.00175.x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Nagao M, Asai A, Sugihara H, Oikawa S (2015) Transgenerational changes of metabolic phenotypes in two selectively bred mouse colonies for different susceptibilities to diet-induced glucose intolerance. Endocr J 62:371–378. https://doi.org/10.1507/endocrj.EJ14-0241

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nagao M, Esguerra JLS, Wendt A et al (2020) Selectively bred diabetes models: GK rats, NSY mice, and ON mice. Methods Mol Biol 2128:25–54. https://doi.org/10.1007/978-1-0716-0385-7_3

    Article  PubMed  Google Scholar 

  10. 10.

    Carr T, Andresen C, Rudel L (1993) Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem 26:39–42

    CAS  Article  Google Scholar 

  11. 11.

    Parlee SD, Lentz SI, Mori H, MacDougald OA (2014) Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol 537:93–122. https://doi.org/10.1016/B978-0-12-411619-1.00006-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Münzberg H, Flier JS, Bjørbæk C (2004) Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145:4880–4889. https://doi.org/10.1210/en.2004-0726

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Enriori PJ, Evans AE, Sinnayah P et al (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5:181–194. https://doi.org/10.1016/j.cmet.2007.02.004

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Plum L, Ma X, Hampel B et al (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116:1886–1901. https://doi.org/10.1172/JCI27123

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hsu SM, Soban E (1982) Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem 30:1079–1082

    CAS  Article  Google Scholar 

  16. 16.

    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  17. 17.

    Saito K, Lee S, Shiuchi T et al (2011) An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes. Anal Biochem 412:9–17. https://doi.org/10.1016/j.ab.2011.01.022

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Thalmann S, Juge-Aubry CE, Meier CA (2008) Explant cultures of white adipose tissue. Methods Mol Biol 456:195–199. https://doi.org/10.1007/978-1-59745-245-8_14

    Article  PubMed  Google Scholar 

  19. 19.

    Nagao M, Asai A, Inaba W et al (2014) Characterization of pancreatic islets in two selectively bred mouse lines with different susceptibilities to high-fat diet-induced glucose intolerance. PLoS One 9:e84725. https://doi.org/10.1371/journal.pone.0084725

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mueller WM, Gregoire FM, Stanhope KL et al (1998) Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 139:551–558

    CAS  Article  Google Scholar 

  21. 21.

    Melzner I, Scott V, Dorsch K et al (2002) Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem 277:45420–45427. https://doi.org/10.1074/jbc.M208511200

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Marchi M, Lisi S, Curcio M et al (2011) Human leptin tissue distribution, but not weight loss-dependent change in expression, is associated with methylation of its promoter. Epigenetics 6:1198–1206. https://doi.org/10.4161/epi.6.10.16600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Schultz NS, Broholm C, Gillberg L et al (2014) Impaired leptin gene expression and release in cultured preadipocytes isolated from individuals born with low birth weight. Diabetes 63:111–121. https://doi.org/10.2337/db13-0621

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kuroda M, Tominaga A, Nakagawa K et al (2016) DNA methylation suppresses leptin gene in 3T3-L1 adipocytes. PLoS One 11:e0160532. https://doi.org/10.1371/journal.pone.0160532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Jenkins AB, Campbell LV (2003) Does relative leptinemia predict weight gain in humans? Obes Res 11:373–374. https://doi.org/10.1038/oby.2003.49

    Article  PubMed  Google Scholar 

  26. 26.

    Hivert M-F, Langlois M-F, Carpentier AC (2007) The entero-insular axis and adipose tissue-related factors in the prediction of weight gain in humans. Int J Obes 31:731–742. https://doi.org/10.1038/sj.ijo.0803500

    CAS  Article  Google Scholar 

  27. 27.

    Ahima RS (2008) Revisiting leptin’s role in obesity and weight loss. J Clin Invest 118:2380–2383. https://doi.org/10.1172/JCI36284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Arch JR, Stock MJ, Trayhurn P (1998) Leptin resistance in obese humans: does it exist and what does it mean? Int J Obes 22:1159–1163. https://doi.org/10.1038/sj.ijo.0800779

    CAS  Article  Google Scholar 

  29. 29.

    Enriori PJ, Evans AE, Sinnayah P, Cowley MA (2006) Leptin resistance and obesity. Obesity (Silver Spring) 14(Suppl 5):254S–258S. https://doi.org/10.1038/oby.2006.319

    CAS  Article  Google Scholar 

  30. 30.

    Myers MG, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 21:643–651. https://doi.org/10.1016/j.tem.2010.08.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Allard C, Doyon M, Brown C et al (2013) Lower leptin levels are associated with higher risk of weight gain over 2 years in healthy young adults. Appl Physiol Nutr Metab 38:280–285. https://doi.org/10.1139/apnm-2012-0225

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Surwit RS, Petro AE, Parekh P, Collins S (1997) Low plasma leptin in response to dietary fat in diabetes- and obesity-prone mice. Diabetes 46:1516–1520

    CAS  Article  Google Scholar 

  33. 33.

    Watson PM, Commins SP, Beiler RJ et al (2000) Differential regulation of leptin expression and function in A/J vs. C57BL/6J mice during diet-induced obesity. Am J Physiol Endocrinol Metab 279:E356–E365. https://doi.org/10.1152/ajpendo.2000.279.2.E356

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Chung WK, Belfi K, Chua M et al (1998) Heterozygosity for Lepob or Leprdb affects body composition and leptin homeostasis in adult mice. Am J Phys 274:R985–R990. https://doi.org/10.1152/ajpregu.1998.274.4.R985

    CAS  Article  Google Scholar 

  35. 35.

    Farooqi IS, Keogh JM, Kamath S et al (2001) Partial leptin deficiency and human adiposity. Nature 414:34–35. https://doi.org/10.1038/35102112

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Begriche K, Lettéron P, Abbey-Toby A et al (2008) Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 294:E939–E951. https://doi.org/10.1152/ajpendo.00379.2007

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Gerich JE (1998) The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 19:491–503. https://doi.org/10.1210/edrv.19.4.0338

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kahn SE (2003) The relative contributions of insulin resistance and beta cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19. https://doi.org/10.1007/s00125-002-1009-0

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lo KA, Huang S, Walet ACE et al (2018) Adipocyte long-noncoding RNA transcriptome analysis of obese mice identified Lnc-Leptin, which regulates leptin. Diabetes 67:1045–1056. https://doi.org/10.2337/db17-0526

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Dallner OS, Marinis JM, Lu Y-H et al (2019) Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med 25:507–516. https://doi.org/10.1038/s41591-019-0370-1

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kilpeläinen TO, Carli JFM, Skowronski AA et al (2016) Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun 7:10494. https://doi.org/10.1038/ncomms10494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9–17. https://doi.org/10.1016/j.cmet.2012.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sharma U, Rando OJ (2017) Metabolic inputs into the epigenome. Cell Metab 25:544–558. https://doi.org/10.1016/j.cmet.2017.02.003

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29:1028–1044. https://doi.org/10.1016/j.cmet.2019.03.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sun L, Lin JD (2019) Function and mechanism of long noncoding RNAs in adipocyte biology. Diabetes 68:887–896. https://doi.org/10.2337/dbi18-0009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank M. Kawahara (Department of Endocrinology, Diabetes and Metabolism, Nippon Medical School, Tokyo, Japan) for excellent technical assistance.

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.


This study was supported by the Japan Society for the Promotion of Science (25860300, 15K08434, 17K08780), the Nippon Medical School Alumni Association and the Lotte Shigemitsu Prize.

Author information




AA and MN conceived and designed the study. AA, MN and KH acquired and analysed the data. TM, HS and SO contributed to the analysis and interpretation of the data. AA drafted the manuscript. MN, KH, TM, HS and SO contributed to critical revision of the manuscript for important intellectual content. All authors approved the final version of the manuscript to be published. AA is the guarantor of this work.

Corresponding author

Correspondence to Akira Asai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM Figures

(PDF 399 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asai, A., Nagao, M., Hayakawa, K. et al. Leptin production capacity determines food intake and susceptibility to obesity-induced diabetes in Oikawa–Nagao Diabetes-Prone and Diabetes-Resistant mice. Diabetologia (2020). https://doi.org/10.1007/s00125-020-05191-8

Download citation


  • Adipocyte
  • DNA methylation
  • Glucose intolerance
  • Hyperphagia
  • Insulin resistance
  • Leptin
  • Obesity
  • Oikawa–Nagao Diabetes-Prone/Resistant mouse