Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.)

Abstract

Key message

The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3.

Abstract

There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on “seed” treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andersen SB, Torp AM (2011) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 273–276

    Google Scholar 

  2. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):3376. https://doi.org/10.1371/journal.pone.0003376

    CAS  Article  Google Scholar 

  3. Chai L, Zhang J, Lu K, Li H, Wu L, Wan H, Zheng B, Cui C, Jiang J, Jiang L (2019) Identification of genomic regions associated with multi-silique trait in Brassica napus. BMC Genomics 20(1):304. https://doi.org/10.1186/s12864-019-5675-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):884–890. https://doi.org/10.1093/bioinformatics/bty560

    CAS  Article  Google Scholar 

  5. Davey JW, Blaxter ML (2011) RADSeq: next-generation population genetics. Brief Funct Genom 10:108. https://doi.org/10.1093/bfgp/elr007

    Article  Google Scholar 

  6. Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (2015) Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. G3 Genes Genom Genet 5(8):1663–1673. https://doi.org/10.1534/g3.115.018671

    CAS  Article  Google Scholar 

  7. Gabrielian E, Fragman-Sapir O (2008) Flowers of the transcaucasus and adjacent areas. Gantner Verlag, Germany

    Google Scholar 

  8. Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC (2017) Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). Theoretical Appl Genet 130(1):41–52. https://doi.org/10.1007/s00122-016-2790-3

    Article  Google Scholar 

  9. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1–2):1–13. https://doi.org/10.1007/s10681-007-9363-0

    Article  Google Scholar 

  10. Hallavant C, Ruas MP (2014) The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th–mid 13th century ad France. Veg Hist Archaeobotany 23(2):153–165. https://doi.org/10.1007/s00334-013-0400-8

    Article  Google Scholar 

  11. Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697. https://doi.org/10.1101/gr.146936.112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111. https://doi.org/10.1016/S1360-1385(01)02223-3

    CAS  Article  PubMed  Google Scholar 

  13. Jia Q, Wang J, Zhu J, Hua W, Shang Y, Yang J, Liang Z (2017) Toward identification of black lemma and pericarp gene Blp1 in barley combining bulked segregant analysis and specific-locus amplified fragment sequencing. Front Plant Sci 8:1414. https://doi.org/10.3389/fpls.2017.01414

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kawamoto N, Sasabe M, Endo M, Machida Y, Araki T (2015) Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci Rep 5:8341. https://doi.org/10.1038/srep08341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Khattak JZ, Torp AM, Andersen SB (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148(3):311–318. https://doi.org/10.1007/s10681-005-9031-1

    CAS  Article  Google Scholar 

  16. Khattak JZ, Torp AM, Andersen SB (2007) Genic microsatellite markers for discrimination of spinach cultivars. Plant Breed 126(4):454–456. https://doi.org/10.1111/j.1439-0523.2007.01392.x

    CAS  Article  Google Scholar 

  17. Kuwahara K, Suzuki R, Ito Y, Mikami T, Onodera Y (2014) An analysis of genetic differentiation and geographical variation of spinach germplasm using SSR markers. Plant Genet Resour 12(02):185–190. https://doi.org/10.1017/S1479262113000464

    Article  Google Scholar 

  18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7(5):e36406. https://doi.org/10.1371/journal.pone.0036406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Meng S, Liu C, Xu X, Song S, Song S, Zhang Z, Liu L (2017) Comparison of morphological features of fruits and seeds for identifying two taxonomic varieties of Spinacia oleracea L. Can J Plant Sci 98(2):318–331. https://doi.org/10.1139/cjps-2017-0119

    CAS  Article  Google Scholar 

  22. Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832. https://doi.org/10.1073/pnas.88.21.9828

    CAS  Article  PubMed  Google Scholar 

  23. Morelock TE, Correll JC (2008). Spinach. In: Vegetables I (ed). Springer, New York, NY, pp189–218.

  24. Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24(3):263–274. https://doi.org/10.1016/j.tplants.2018.11.008

    CAS  Article  PubMed  Google Scholar 

  25. Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43(6):861–872. https://doi.org/10.1111/j.1365-313X.2005.02498.x

    CAS  Article  PubMed  Google Scholar 

  26. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mole Biol Report 15(1):8–15

    CAS  Article  Google Scholar 

  27. Qian W, Fan G, Liu D, Zhang H, Wang X, Wu J, Xu Z (2017) Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics 18(1):276. https://doi.org/10.1186/s12864-017-3659-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Ribera A, Bai Y, Wolters AA, Treuren RV, Kik C (2020) A review on the genetic resources domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 216(3):1–21

    Article  Google Scholar 

  29. Sanguinetti CJ, Dias EN, Simpson A (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17(5):914–921

    CAS  PubMed  Google Scholar 

  30. She H, Qian W, Zhang H, Liu Z, Wang X, Wu J, Feng C, Correll JC, Xu Z (2018) Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. Theor Appl Genet 131(12):2529–2541. https://doi.org/10.1007/s00122-018-3169-4

    CAS  Article  PubMed  Google Scholar 

  31. Sneep J (1958) The breeding of hybrid varieties and the production of hybrid seed in spinach. Euphytica 7(2):119–122. https://doi.org/10.1007/BF00035724

    Article  Google Scholar 

  32. Song WY, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22(7):2237–2252. https://doi.org/10.1105/tpc.109.070185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8(3):e58700. https://doi.org/10.1371/journal.pone.0058700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183. https://doi.org/10.1111/tpj.12105

    CAS  Article  PubMed  Google Scholar 

  35. Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8(1):1–15. https://doi.org/10.1017/S1479262109990062

    Article  Google Scholar 

  36. Van Treuren R, de Groot L, Hisoriev H, Khassanov F, Farzaliyev V, Melyan G, Gabrielyan I, van Soest L, Tulmans C, Courand D (2020) Acquisition and regeneration of Spinacia turkestanica Iljin and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genet Resour Crop Evol 67:549–559. https://doi.org/10.1007/s10722-019-00792-8

    Article  Google Scholar 

  37. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530. https://doi.org/10.1016/j.tibtech.2009.05.006

    CAS  Article  PubMed  Google Scholar 

  38. Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J, Zhang Z, Huang S, Dai S, Mou B, Wang Q, Fei Z, Wang Q (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8(1):15275. https://doi.org/10.1038/ncomms15275

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Yang O, Popova OV, Süthoff U, Lüking I, Dietz K-J, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene. https://doi.org/10.1016/j.gene.2009.02.010

    Article  PubMed  Google Scholar 

  40. Yu QB, Zhao TT, Ye LS, Cheng L, Wu YQ, Huang C, Yang ZN (2018) PTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II. Photosynth Res 137:69–83. https://doi.org/10.1007/s11120-018-0479-y

    CAS  Article  PubMed  Google Scholar 

  41. Zhang P, Zhu Y, Wang L, Chen L, Zhou S (2015) Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 16(1):1058. https://doi.org/10.1186/s12864-015-2041-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao C, Zhao G, Geng Z, Wang Z, Wang K, Liu S, Zhang H, Guo B, Geng J (2018) Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genom 19(1):6. https://doi.org/10.1186/s12864-017-4406-y

    CAS  Article  Google Scholar 

  43. Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L (2016) Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought resistance related genes. Plant Physiol 171(4):2810–2825. https://doi.org/10.1104/pp.16.00469

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was performed at the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China and was supported by National Natural Science Foundation of China (31902008), the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP-IVFCAAS), Central Public-interest Scientific Institution Basal Research Fund (IVF-BRF2019003).

Author information

Affiliations

Authors

Contributions

WQ designed the study. ZL and TL conducted the experiments and analyzed the data. ZL wrote the manuscript. QW, FC and CJ made the revision of the manuscript. ZL, HZ and ZX prepared and collected the samples.

Corresponding authors

Correspondence to James C. Correll or Wei Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Amnon Levi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLS 8737 kb)

Supplementary file 2 (PDF 209 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lu, T., Feng, C. et al. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). Theor Appl Genet (2021). https://doi.org/10.1007/s00122-021-03772-8

Download citation