Skip to main content

Advertisement

Log in

Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops

  • Review Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress.

Abstract

In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharon R, Shahak Y, Wininger S et al (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliprantis AO, Yang R-B, Mark MR et al (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  CAS  PubMed  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochem 68:945–951

    CAS  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant,\ Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Amara I, Zaidi I, Masmoudi K et al (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am J Plant Sci 5:3440

    Article  CAS  Google Scholar 

  • Anil Kumar S, Hima Kumari P, Shravan Kumar G et al (2015) Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci 6:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbona V, Manzi M, Zandalinas SI et al (2017) Physiological, metabolic, and molecular responses of plants to abiotic stress. In: Sarwat M, Ahmad A, Abdin M, Ibrahim M (eds) Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer, Cham, pp 1–35

    Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam M, Singh R, Anandhan S et al (2009) Development of a transformation protocol for Tecomella undulata (Smith) Seem from cotyledonary node explants. Sci Hortic (Amsterdam) 121:119–121

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:1–24

    Article  Google Scholar 

  • Awasthi R, Gaur P, Turner NC et al (2017) Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop Pasture Sci 68:823–841

    Article  CAS  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: jack of many trades in plants. Plant signal Behav 9:e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan H, Gajjeraman P, Pattiwala YU (2016) Molecular cloning and expression analysis of MYB-related transcription factor gene, ScMYB76 from sugarcane (Saccharum hybrid). Indian J Sci Technol 9:1–10

    CAS  Google Scholar 

  • Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 116:15811–15851

    Article  CAS  Google Scholar 

  • Baloglu MC, Eldem V, Hajyzadeh M, Unver T (2014) Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE 9:e96014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 15:1–17

    Article  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17

    Article  CAS  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Bao F, Du D, An Y et al (2017) Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci 8:15

    Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:19

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer H, Ache P, Lautner S et al (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57

    Article  CAS  PubMed  Google Scholar 

  • Ben Saad R, Fabre D, Mieulet D et al (2012) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35:626–643

    Article  CAS  PubMed  Google Scholar 

  • Berriri S, Garcia AV, dit Frey NF (2012) Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco FA, Zanetti ME, Casalongué CA, Daleo GR (2006) Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem 44:315–322

    Article  CAS  PubMed  Google Scholar 

  • Bobbert T, Rochlitz H, Wegewitz U et al (2005) Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes 54:2712–2719

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, Byrne P, Cassman KG et al (2013) The US drought of 2012 in perspective: a call to action. Glob Food Secur 2:139–143

    Article  Google Scholar 

  • Bredow M, Vanderbeld B, Walker VK (2017) Ice-binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana. Plant Biotechnol J 15:68–81

    Article  CAS  PubMed  Google Scholar 

  • Bundó M, Coca M (2017) Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. J Exp Bot 68:2963–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo S, Baldrich P, Messeguer J et al (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J-G, Willard FS, Huang J et al (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301:1728–1731

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren F, Zhou L et al (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Li W, Hu X et al (2015a) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56:917–929

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lo S, Sun P et al (2015b) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13:105–116

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu L, Wang L et al (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Nolan TM, Ye H et al (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew YH, Halliday KJ (2011) A stress-free walk from Arabidopsis to crops. Curr Opin Biotechnol 22:281–286

    Article  CAS  PubMed  Google Scholar 

  • Choudhury SR, Bisht NC, Thompson R et al (2011) Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean. PLoS ONE 6:e23361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Front Plant Sci 8:410

    PubMed  PubMed Central  Google Scholar 

  • Chu X, Wang C, Chen X et al (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10:e0143022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristina MS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  Google Scholar 

  • Dai F, Zhang C, Jiang X et al (2012) RhNAC2 and RhEXPA4 are involved in regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:112

    Article  CAS  Google Scholar 

  • Dalal M, Chinnusamy V (2015) ABA receptors: prospects for enhancing biotic and abiotic stress tolerance of crops. In: Pandey G (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, NY, pp 271–298

    Chapter  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Dansana PK, Kothari KS, Vij S, Tyagi AK (2014) OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep 33:1425–1440

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chakraborty S (2016) The role of osmotin protein tolerance to biotic and abiotic stress in plants. Int J Bioinform Biol Sci 4:35

    Article  Google Scholar 

  • Das M, Chauhan H, Chhibbar A et al (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  CAS  PubMed  Google Scholar 

  • Das A, Eldakak M, Paudel B et al (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Biomed Res Int 2016:6021047. https://doi.org/10.1155/2016/6021047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • De Boeck HJ, Bassin S, Verlinden M et al (2016) Simulated heat waves affected alpine grassland only in combination with drought. New Phytol 209:531–541

    Article  PubMed  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  CAS  PubMed  Google Scholar 

  • Deng L-Q, Yu H-Q, Liu Y-P et al (2014) Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 539:132–140

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Sonah H, Bélanger RR (2016) Plant Aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7:1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Horák J, Chaban C et al (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE 3:e2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Iwasaki I, Kitagawa Y (2004) Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells. Plant Cell Environ 27:177–186

    Article  CAS  Google Scholar 

  • Dixit AR, Dhankher OP (2011) A novel stress-associated protein “AtSAP10”from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS ONE 6:e20921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit A, Tomar P, Vaine E et al (2017) A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ 41:1171–1185

    Article  CAS  Google Scholar 

  • Du H, Huang M, Zhang Z, Cheng S (2014) Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. Euphytica 198:115–126

    Article  CAS  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Aleynova OA, Kiselev KV (2016) Influence of overexpression of the true and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes on the growth, stress tolerance, and resveratrol content in Vitis amurensis cell cultures. Acta Physiol Plant 38:78

    Article  CAS  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Eriksson SK, Harryson P (2011) Dehydrins: molecular biology, structure and function. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Ecological studies (analysis and synthesis), vol 215. Springer, Berlin, pp 289–305

    Google Scholar 

  • Eriksson S, Eremina N, Barth A et al (2016) Membrane-induced folding of the plant-stress protein Lti30. Plant Physiol 71:932–943

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Guo Q, Xu P et al (2015) Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum. PLoS ONE 10:e0126148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Liao K, Du H et al (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Gao Z, Xiao G et al (2014) Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice. Plant Mol Biol Rep 32:1158–1168

    Article  CAS  Google Scholar 

  • Feng W, Kita D, Peaucelle A et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira PC, Hemerly AS, Villarroel R et al (1991) The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3:531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Yao H, Zhao H et al (2016) Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem 109:387–396

    Article  CAS  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P et al (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci 106:21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghneim-Herrera T, Selvaraj MG, Meynard D et al (2017) Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Front Plant Sci 8:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732

    Article  CAS  PubMed  Google Scholar 

  • Giri J, Dansana PK, Kothari KS et al (2013) SAPs as novel regulators of abiotic stress response in plants. BioEssays 35:639–648

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Kumar RR, Sharma SK et al (2015) Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. J Plant Biochem Biotechnol 24:441–452

    Article  CAS  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Greeff CCG, Roux MMR, Mundy JJM, Petersen MMP (2012) Receptor-like kinase complexes in plant innate immunity. Front Plant Sci 3:209

    PubMed  PubMed Central  Google Scholar 

  • Grigorova B, Vaseva I, Demirevska K, Feller U (2011) Combined drought and heat stress in wheat: changes in some heat shock proteins. Biol Plant 55:105–111

    Article  CAS  Google Scholar 

  • Gu Z, Ma B, Jiang Y et al (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415:1–12

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Guo Z-H, Hao P-P et al (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra D, Crosatti C, Khoshro HH et al (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu J-H, Ma X et al (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Zhang L, Zhu J et al (2017) Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. Plant Sci 256:160–169

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K et al (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Brini F, Ebel C et al (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Wei W, Song Q et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Eckert C, Anschütz U et al (2012) Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem 287:7956–7968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Yang X, Wang L et al (2013) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435:209–215

    Article  CAS  PubMed  Google Scholar 

  • He G-H, Xu J-Y, Wang Y-X et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Zhong J, Sun X et al (2018) The maize ABA receptors ZmPYL8, 9, and 12 facilitate plant drought resistance. Front Plant Sci 9:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Hettenhausen C, Sun G, He Y et al (2016) Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Sci Rep 6:18973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines P (2009) ABA receptor up close. Sci Signal 2:ec391

    Google Scholar 

  • Hong JK, Jung HW, Lee BK et al (2004) An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol Mol Plant Pathol 64:301–310

    Article  CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L et al (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu HH, Dai MQ, Yao JL et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Qi G, Kong Y et al (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Yang Y, Gong F et al (2015) Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteomics 115:81–92

    Article  CAS  PubMed  Google Scholar 

  • Hu SB, Zhou Q, An J, Yu BJ (2016a) Cloning PIP genes in drought-tolerant vetiver grass and responses of transgenic VzPIP2; 1 soybean plants to water stress. Biol Plant 60:655–666

    Article  CAS  Google Scholar 

  • Hu T, Zhu S, Tan L et al (2016b) Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ Exp Bot 123:68–77

    Article  CAS  Google Scholar 

  • Hu W, Yang H, Yan Y et al (2016c) Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Sci Rep 6:22783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Wang M-M, Jiang Y et al (2008) Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420:135–144

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Wang Y, Wang W et al (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 209:94

    Article  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J et al (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol 163:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118

    Article  CAS  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria × ananassa Duch.) plants. Indian J Biotechnol 7:465–471

    CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM et al (2010) The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196

    Article  PubMed  Google Scholar 

  • Jia H, Wang C, Wang F et al (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 10:e0120646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Ma S, Ye N et al (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JÁ, Alonso-Ramírez A, Nicolás C (2008) Two cDNA clones (FsDhn1 and FsClo1) up-regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds. J Plant Physiol 165:1798–1807

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Lim F-L, Finkler A et al (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom 15:456

    Article  CAS  Google Scholar 

  • Jones HG (2006) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130

    Article  CAS  PubMed  Google Scholar 

  • Joshi RK, Kar B, Nayak S (2011) Characterization of mitogen activated protein kinases (MAPKs) in the Curcuma longa expressed sequence tag database. Bioinformation 7:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Singla-Pareek SL, Pareek A (2018) Engineering abiotic stress response in plants for biomass production. J Biol Chem 293:5035–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4:re4

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Petla BP, Kamble NU et al (2015) Differentially expressed seed aging responsive heat shock protein OsHSP18. 2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci 14:713

    Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Kharte SB, Watharkar AD, Shingote PR et al (2016) Functional characterization and expression study of sugarcane MYB transcription factor gene PEaMYBAS1 promoter from Erianthus arundinaceus that confers abiotic stress tolerance in tobacco. RSC Adv 6:19576–19586

    Article  CAS  Google Scholar 

  • Kim K-N, Cheong YH, Grant JJ et al (2003) CIPK3, a calcium sensor–associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lee K, Hwang H et al (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65:453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154:479–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity–what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343

    PubMed  PubMed Central  Google Scholar 

  • Kotak S, Port M, Ganguli A et al (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kothari KS, Dansana PK, Giri J, Tyagi AK (2016) Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front Plant Sci 7:1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs D, Agoston B, Tompa P (2008a) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008b) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozłowska M, Rybus-Zajac M, Stachowiak J, Janowska B (2007) Changes in carbohydrate contents of Zantedeschia leaves under gibberellin-stimulated flowering. Acta Physiol Plant 29:27–32

    Article  CAS  Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Król A (2013) The growth and water uptake by yellow seed and black seed rape depending on the state of soil compaction. Dissertation. Bohdan Dobrzañski Institute of Agrophysics PAS, Lublin

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Goswami S, Sharma SK et al (2012) Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J Plant Physiol Biochem 4:83–91

    CAS  Google Scholar 

  • Kumar MN, Jane W-N, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Lee SC, Kim JY et al (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Lakra N, Nutan KK, Das P et al (2015) A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. J Plant Physiol 176:36–46

    Article  CAS  PubMed  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:1–14

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A, Venkatswarlu B (eds) Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTech, London, pp 1–31

    Google Scholar 

  • Latif F, Ullah F, Mehmood S et al (2016) Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agric Scand Sect B Soil Plant Sci 66:325–332

    CAS  Google Scholar 

  • Latz A, Mehlmer N, Zapf S et al (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6:1274–1289

    Article  CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG (2014) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS ONE 9:e111751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Nishiyama RIE, Watanabe Y et al (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TTT, Williams B, Mundree SG (2018) An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Physiol Plant 162:13–34

    Article  CAS  PubMed  Google Scholar 

  • Lee S-C, Lee M-Y, Kim S-J et al (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells 19:1–8

    Article  CAS  Google Scholar 

  • Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci 106:21419–21424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-W, Rahman M, Choi GJ et al (2017) Expression of small heat shock protein23 enhanced heat stress tolerance in transgenic ALFALFA plants. JAPS J Anim Plant Sci 27:1238–1244

    CAS  Google Scholar 

  • Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 60:350–361

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84

    Article  CAS  PubMed  Google Scholar 

  • Li S, Fu Q, Chen L et al (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014a) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta (BBA)-Gen Subj 1840:1574–1582

    Article  CAS  Google Scholar 

  • Li X, Wu Y-L, Yang B et al (2014b) Function analysis of sugarcane A20/AN1 zinc-finger protein gene ShSAP1 in transgenic tobacco. Crop Sci 54:2724–2734

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Sun X et al (2014c) Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS ONE 9:e107605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Q, Wu Y, Wang K et al (2017) Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci Rep 7:4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Jiang Y, Xu J et al (2017) Overexpression of a thylakoid membrane protein gene OsTMP14 improves indica rice cold tolerance. Biotechnol Biotechnol Equip 31:717–724

    Article  CAS  Google Scholar 

  • Liberek K, Lewandowska A, Ziętkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Romeis T (2013) Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim Biophys Acta (BBA) Mol Cell Res 1833:1582–1589

    Article  CAS  Google Scholar 

  • Lim CW, Yang SH, Shin KH et al (2015) The AtLRK10L1. 2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34:447–455

    Article  CAS  PubMed  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling H, Zeng X, Guo S (2016) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 6:39693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link V, Sinha AK, Vashista P et al (2002) A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett 531:179–183

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Xing X et al (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yu C, Li H et al (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang J, Sun L et al (2016) Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress. Front Plant Sci 7:1011

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Wei C, Zhang M et al (2017) Mulberry MnMAPK1, a group C mitogen-activated protein kinase gene, endowed transgenic Arabidopsis with novel responses to various abiotic stresses. Plant Cell Tissue Organ Cult 131:151–162

    Article  CAS  Google Scholar 

  • Llorca CM, Potschin M, Zentgraf U (2014) bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci 5:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloret A, Conejero A, Leida C et al (2017) Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 7:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Chen X, Wu Y et al (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS ONE 8:e57171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Zhang X, Duan H et al (2017) Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol Plant 162:73–97

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Magwanga RO, Lu H et al (2018) A novel G-protein-coupled receptors gene from upland cotton enhances salt stress tolerance in transgenic Arabidopsis. Genes (Basel) 9:209

    Article  CAS  Google Scholar 

  • Luo Q, Wei Q, Wang R et al (2017) BdCIPK31, a calcineurin b-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci 8:1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch T, Erickson BJ, Finkelstein RR (2012) Direct interactions of ABA-insensitive (ABI)-clade protein phosphatase (PP) 2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol Biol 80:647–658

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science (80-) 324:1064–1068

    CAS  Google Scholar 

  • Malik AA, Veltri M, Boddington KF et al (2017) Genome analysis of conserved dehydrin motifs in vascular plants. Front Plant Sci 8:709

    Article  PubMed  PubMed Central  Google Scholar 

  • Manfre AJ, Lanni LM, Marcotte WR (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manik SM, Shi S, Mao J et al (2015) The calcium sensor CBL-CIPK is involved in plant’s response to abiotic stresses. Int J Genom 11:1–10

    Google Scholar 

  • Mao X, Chen S, Li A et al (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE 9:e84359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Wang H, Liu S et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Yu L, Han R et al (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66

    Article  CAS  PubMed  Google Scholar 

  • Martins CPS, Neves DM, Cidade LC et al (2017) Expression of the citrus CsTIP2; 1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta 245:951–963

    Article  CAS  PubMed  Google Scholar 

  • Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:53–64

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Wu Y, Venkataraman G et al (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266

    Article  CAS  PubMed  Google Scholar 

  • Moustafa K, AbuQamar S, Jarrar M et al (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy J, Chua N-H (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa S, Hauser F, Park J et al (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol 28:154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir S, Liu H, Xing Y et al (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6:31772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Raghothama KG, Singh NK et al (1992) Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol Biol 19:577–588

    Article  CAS  PubMed  Google Scholar 

  • Ng LM (2016) Abscisic acid signalling as a target for enhancing drought tolerance. In: Shanker A, Shanker C (eds) Abiotic and biotic stress in plants-recent advances and future perspectives. InTech, London, p 22

    Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning W, Zhai H, Yu J et al (2017) Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breed 37:19

    Article  CAS  Google Scholar 

  • Noman A, Liu Z, Aqeel M et al (2017) Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 39:1779–1791

    Article  CAS  PubMed  Google Scholar 

  • Nongpiur R, Soni P, Karan R et al (2012) Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signal Behav 7:1230–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouri MZ, Komatsu S (2013) Subcellular protein overexpression to develop abiotic stress tolerant plants. Front Plant Sci 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  PubMed  Google Scholar 

  • Pandey GK, Pandey A, Prasad M, Böhmer M (2016) Abiotic stress signaling in plants: functional genomic intervention. Front Plant Sci 7:68

    Google Scholar 

  • Parent B, Turc O, Gibon Y et al (2010) Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes. J Exp Bot 61:2057–2069

    Article  CAS  PubMed  Google Scholar 

  • Park WJ, Campbell BT (2015) Aquaporins as targets for stress tolerance in plants: genomic complexity and perspectives. Turk J Bot 39:879–886

    Article  CAS  Google Scholar 

  • Park S-Y, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science (80-) 324:1068–1071

    CAS  Google Scholar 

  • Park YC, Chapagain S, Jang CS (2018) A negative regulator in response to salinity in rice: Oryza sativa Salt-, ABA-and Drought-induced RING finger protein 1 (OsSADR1). Plant Cell Physiol 59:575–589

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa AM, Martins CDPS, Gonçalves LP et al (2015) Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS ONE 10:e0145785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI et al (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int. https://doi.org/10.1155/2013/654120

    Article  PubMed  Google Scholar 

  • Perochon A, Aldon D, Galaud J-P, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93:2048–2053

    Article  CAS  PubMed  Google Scholar 

  • Pham J, Liu J, Bennett MH et al (2012) Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol 194:168–180

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Pornsiriwong W, Estavillo GM, Chan KX et al (2017) A chloroplast retrograde signal, 3′-phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife 6:e23361. https://doi.org/10.7554/eLife.23361

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes (response of crops), pp 301–355

  • Puhakainen T, Hess MW, Mäkelä P et al (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Qiao B, Zhang Q, Liu D et al (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 66:5853–5866

    Article  CAS  PubMed  Google Scholar 

  • Rahnama A, Poustini K, Tavakkol-Afshari R, Tavakoli A (2010) Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. Int J Biol Life Sci 6:216–221

    Google Scholar 

  • Rakhra G, Sharma AD (2012) Expression analysis of some boiling stable proteins (Hydrophilins) under combined effect of drought stress and heat shock in drought tolerant and susceptible cultivars of Triticum aestivum. Agric Agric Pract Sci J 81:1–10

    Google Scholar 

  • Ranty B, Aldon D, Cotelle V et al (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasul I, Nadeem H, Siddique MH et al (2017) Plants sensory-response mechanisms for salinity and heat stress. JAPS J Anim Plant Sci 27:490–502

    CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaut J, Hoffmann L, Hausman J (2005) Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol Plant 125:82–94

    Article  CAS  Google Scholar 

  • Reuscher S, Akiyama M, Mori C et al (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 8:e79052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rexroth S, Mullineaux CW, Ellinger D et al (2011) The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23:2379–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Rodrigo M, Colmener-Flores JM et al (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J et al (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins JA, Habte E, Templer SE et al (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273

    Article  CAS  PubMed  Google Scholar 

  • Roy S (2016) Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav 11:e1117723

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S et al (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad RB, Zouari N, Ben Ramdhan W et al (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171

    Article  CAS  PubMed  Google Scholar 

  • Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Kim Y-S, Han S-H et al (2015) The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27:1771–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šamajová O, Plíhal O, Al-Yousif M et al (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Sato Y, Fukao Y et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2. 6 protein kinase. Biochem J 424:439–448

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. Arab B 6:e0112

    Article  Google Scholar 

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Sita K, Kumar J et al (2017a) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1–22

    Article  Google Scholar 

  • Sehgal A, Sita K, Kumar J et al (2017b) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, OHME-TAKAGI M (2014) A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ 37:2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK et al (2014) Drought stress responses in crops. Funct Integr Genom 14:11–22

    Article  CAS  Google Scholar 

  • Shao H-B, Chu L-Y, Jaleel CA et al (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AD, Kaur P (2009) Combined effect of drought stress and heat shock on cyclophilin protein expression in Triticum aestivum. Gen Appl Plant Physiol 35:88–92

    CAS  Google Scholar 

  • Shen H, Zhong X, Zhao F et al (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33:996

    Article  CAS  PubMed  Google Scholar 

  • Shi J, An H-L, Zhang L et al (2010) GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 74:1–17

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Zhu J-K, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih M-D, Hoekstra FA, Hsing Y-IC (2008) Late embryogenesis abundant proteins. In: Kader JC, Delseny M (eds) Advances in botanical research. Elsevier, pp 211–225

  • Shiraya T, Mori T, Maruyama T et al (2015) Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnol J 13:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu S-H, Karlowski WM, Pan R et al (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Liu Y, Zhang J et al (2016) Genome-wide analysis of the AP2/ERF superfamily genes and their responses to abiotic stress in Medicago truncatula. Front Plant Sci 6:124

    Article  Google Scholar 

  • Silvestri C, Celletti S, Cristofori V et al (2017) Olive (Olea europaea L.) plants transgenic for tobacco osmotin gene are less sensitive to in vitro-induced drought stress. Acta Physiol Plant 39:229

    Article  CAS  Google Scholar 

  • Simeunovic A, Mair A, Wurzinger B, Teige M (2016) Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. J Exp Bot 67:3855–3872

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Nelson DE, Kuhn D et al (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90:1096–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kushwaha HR, Soni P et al (2015) Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Front Plant Sci 6:711

    PubMed  PubMed Central  Google Scholar 

  • Sinha AK, Ara H (2014) Conscientiousness of mitogen activated protein kinases in acquiring tolerance for abiotic stresses in plants. Proc Indian Natl Sci Acad 80:211–219

    Article  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sita K, Sehgal A, Kumar J et al (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci 8:1–27

    Google Scholar 

  • Sornaraj P, Luang S, Lopato S, Hrmova M (2016) Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta (BBA)-Gen Subj 1860:46–56

    Article  CAS  Google Scholar 

  • Sun L, Liu Y, Kong X et al (2012) ZmHSP16. 9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Susan J, Fatemeh R, Latifeh P (2013) Effect of abiotic stresses on histidine kinases gene expression in Zea mays L. cv. SC. 704. J Stress Physiol Biochem 9:124–135

    Google Scholar 

  • Suzuki N (2016) Hormone signaling pathways under stress combinations. Plant Signal Behav 11:e1247139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Salazar C et al (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M et al (2016) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    Article  CAS  Google Scholar 

  • Tang N, Zhang H, Li X et al (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:111

    Article  CAS  Google Scholar 

  • Team CW, Pachauri RK, Meyer LA (2014) IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I. II III to Fifth Assess Rep Intergov panel Clim Chang IPCC, Geneva, Switz 151

  • Thirumalaikumar VP, Devkar V, Mehterov N et al (2017) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J 16:354–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Wang Z, Li X et al (2015) Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran L-SP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci 104:20623–20628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran L-SP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39

    Article  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239:255–266

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Wang X, Huang L et al (2016) Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses. Plant Cell Tissue Organ Cult 125:537–551

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clarke M (eds) Dormancy and resistance in harsh environments. Topics in current genetics, vol 21. Springer, Berlin, pp 91–108

    Chapter  Google Scholar 

  • Tuteja N, Gill SS (2016) Abiotic stress response in plants. Wiley, Hoboken

    Book  Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah H, Chen J-G, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Takahashi F et al (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6:rs8

    Article  CAS  PubMed  Google Scholar 

  • Urano D, Jones AM (2014) Heterotrimeric G protein–coupled signaling in plants. Annu Rev Plant Biol 65:365–384

    Article  CAS  PubMed  Google Scholar 

  • Vahisalu T, Puzõrjova I, Brosché M et al (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62:442–453

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Deepti S (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res 4:149

    Google Scholar 

  • Vij S, Tyagi AK (2006) Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger (s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genom 276:565–575

    Article  CAS  Google Scholar 

  • Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genom 8:301–307

    Article  CAS  Google Scholar 

  • Viktorova J, Krasny L, Kamlar M et al (2012) Osmotin, a pathogenesis-related protein. Curr Protein Pept Sci 13:672–681

    Article  CAS  PubMed  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang X-Q, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun N, Deng T et al (2014a) Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genom 15:961

    Article  CAS  Google Scholar 

  • Wang M, Li P, Li C et al (2014b) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zeng J, Li Y et al (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Lu W, He X et al (2016a) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016b) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Yan B, Shi M et al (2016c) Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma 253:637–645

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu G, Hao Y et al (2017a) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453–469

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li Q-T, Lei Q et al (2017b) Ectopically expressing MdPIP1; 3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biol 17:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li Z, Lu M, Wang Y (2017c) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic tamarix and Arabidopsis. Front Plant Sci 8:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang L, Zhang Y et al (2017d) Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS ONE 12:e0171340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Hu W, Deng X et al (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Luo Q, Wang R et al (2017) A Wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt Stress responses in transgenic Tobacco plants. Front Plant Sci 8:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zu X, Zhang H et al (2015) Overexpression of ZmMAPK1 enhances drought and heat stress in transgenic Arabidopsis thaliana. Plant Mol Biol 88:429–443

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H et al (2008) Characterization of OsbZIP23 as a key player of bZIP transcription factor family for conferring ABA sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Zheng L, Deng L et al (2014) The role of R2R3MYB transcription factors in plant stress tolerance. J Anim Plant Sci 24:1821–1833

    Google Scholar 

  • Xin H, Zhang H, Zhong X et al (2017) Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell Tissue Organ Cult 130:617–629

    Article  CAS  Google Scholar 

  • Xiong L, Zhu J (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Huang B (2012) Comparative analysis of proteomic responses to single and simultaneous drought and heat stress for two Kentucky bluegrass cultivars. Crop Sci 52:1246–1260

    Article  CAS  Google Scholar 

  • Xu G-Y, Rocha PSCF, Wang M-L et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wang M, Zhou L et al (2013) Heterologous expression of the wheat aquaporin gene TaTIP2; 2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS ONE 8:e79618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D-B, Gao S-Q, Ma Y-Z et al (2014a) ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Funct Integr Genom 14:717–730

    Article  CAS  Google Scholar 

  • Xu Y, Hu W, Liu J et al (2014b) A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Chen S, Li T et al (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav DK, Tuteja N (2011) Rice G-protein coupled receptor (GPCR) In silico analysis and transcription regulation under abiotic stress. Plant Signal Behav 6:1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-G, Lv W-T, Li M-J et al (2013) Maize membrane-bound transcription factor Zmbzip17 is a key regulator in the cross-talk of ER quality control and ABA signaling. Plant Cell Physiol 54:2020–2033

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yu L, Zhang K et al (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Ding Y, Jiang Q et al (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Huang L, Wang M et al (2017) OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Mol Breed 37(6):75

    Article  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H et al (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  CAS  PubMed  Google Scholar 

  • You J, Zong W, Hu H et al (2014) A SNAC1-regulated protein phosphatase gene OsPP18 modulates drought and oxidative stress tolerance through ABA-independent reactive oxygen species scavenging in rice. Plant Physiol 166:114

    Article  CAS  Google Scholar 

  • Yu Q, An L, Li W (2014) The CBL–CIPK network mediates different signaling pathways in plants. Plant Cell Rep 33:203–214

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Lai Y, Wu X et al (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478:703–709

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Takebayashi A, Demura T, Ohtani M (2017) Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid. J Plant Res 130:929–940

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Cao H, Wang L et al (2014) Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant Physiol Biochem 83:65–76

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Rivero RM, Martínez V et al (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:1–16

    Article  CAS  Google Scholar 

  • Zandalinas SI, Sales C, Beltrán J et al (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D et al (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  CAS  PubMed  Google Scholar 

  • Zargar SM, Nagar P, Deshmukh R et al (2017) Aquaporins as potential drought tolerance inducing proteins: towards instigating stress tolerance. J Proteom 169:233–238

    Article  CAS  Google Scholar 

  • Zeng H, Xu L, Singh A et al (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2014) Identification and characterization of the grape WRKY family. Biomed Res Int 14:787680

    Google Scholar 

  • Zhang YX, Chen L (2017) Overexpression of the receptor-like kinase gene OsNRRB enhances drought-stress tolerance in rice. Euphytica 213:86

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhang H, Liang W, Yang X et al (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xi D, Li S et al (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Chen S, Harmon AC (2014) Protein phosphorylation in stomatal movement. Plant Signal Behav 9:e972845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Y, Jia H-X et al (2015) The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. Front Plant Sci 6:74

    Google Scholar 

  • Zhang X, Zhang B, Li MJ et al (2016) OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol 59:271–281

    Article  CAS  Google Scholar 

  • Zhao Y, Chan Z, Xing L et al (2013a) The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Res 23:1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Liu W, Xu Y-P et al (2013b) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chan Z, Gao J et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci 113:1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Jia C-G, Wu X et al (2016) ZmDBF3, a novel transcription factor from maize (Zea mays L.), is involved in multiple abiotic stress tolerance. Plant Mol Biol Rep 34:353–364

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Thalor SK, Takahashi Y et al (2012) An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ 35:2014–2030

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Dunand C, Snedden W, Galaud J-P (2015) CaM and CML emergence in the green lineage. Trends Plant Sci 20:483–489

    Article  CAS  PubMed  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Article  Google Scholar 

  • Zong J-M, Li X-W, Zhou Y-H et al (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17:611

    Article  CAS  PubMed Central  Google Scholar 

  • Zou Y, Liu X, Wang Q et al (2014) OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta (BBA) Gen Subj 1840:1676–1685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author (MP) is thankful to CSIR-UGC, New Delhi, India, for financial support in the form of a fellowship. The corresponding author is thankful to DST, New Delhi, for PURSE grants and University of Western Australia, Australia, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Nayyar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Lizhong Xiong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, M., Dhanker, O.P., Siddique, K.H.M. et al. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet 132, 1607–1638 (2019). https://doi.org/10.1007/s00122-019-03331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03331-2

Navigation