Skip to main content
Log in

Development of an X-specific marker and identification of YY individuals in spinach

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Spinach is a popular vegetable native to central and western Asia. It is dioecious with a pair of nascent sex chromosomes. The difficulties of working with the non-recombining sex determination region of XY individuals have hindered the progress toward sequencing sex chromosomes of most dioecious species. Here we present important advances toward characterizing the non-recombining sex chromosomes in spinach. Of nearly 400 spinach accessions screened, we identified a single accession of spinach in which androdioecious XY individuals segregate YY spinach. The male and female genomes of the spinach cultivar Shami and USDA accession PI 664497 were sequenced at 12–17 × coverage. X-specific sequences were identified by comparing the depth of coverage differences between male and female alignments to a female draft genome. YY individuals were used as a negative control to validate X-specific markers found by depth of coverage analysis. Of 19 possible X chromosome sequences found by depth of coverage analysis, one was verified to be X-specific by a PCR-based marker, SpoX, which amplified genomic DNA from XX and XY, but not YY templates. Androdioecious XY individuals of accession PI 217425 (Cornell #9) were used to develop inbred lines, and at S7 generation, all XY individuals were androdioecious and all YY individuals were pure male. The sex reversal of the XY mutant to hermaphrodite is strong evidence that the sex chromosomes in spinach have a two-gene sex determination system. These results are crucial towards sequencing the X and Y chromosomes to advance sex chromosome research in spinach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346(80):646–650

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu T, Suzuki R, Uchimiya H (1998) Determination of male or female of spinach by using DNA marker. Japanese patent JPH1052284, Sakata No Tane KK, Japan

  • Al-Dous EK et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527

    Article  PubMed  CAS  Google Scholar 

  • Chailakhyan M (1979) Genetic and hormonal regulation of growth, flowering, and sex expression in plants. Am J Bot 66:717–736

    Article  CAS  Google Scholar 

  • Chailakhyan, Khryanin V (1979) The role of leaves in sex expression in hemp and spinach. Planta 144:205–207

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975

    Article  Google Scholar 

  • Cherif E et al (2013) Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol 197:409–415

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • Deng CL et al (2013) Microdissection and painting of the Y chromosome in spinach (Spinacia oleracea). J Plant Res 126:549–556

    Article  PubMed  CAS  Google Scholar 

  • Dohm JC et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  PubMed  CAS  Google Scholar 

  • Doyle J, Doyle J (1991) DNA isolation from small amount of plant tissue. Phytochem Bull 57:13–15

    Google Scholar 

  • Ellis JR, Janick J (1960) The chromosomes of Spinacia oleracea. Am J Bot 47:210

    Article  Google Scholar 

  • Fujita N et al (2012) Narrowing down the mapping of plant sex-determination regions using new Y-chromosome-specific markers and heavy-ion beam irradiation-induced Y-deletion mutants in Silene latifolia. G3 Genes Genomes Genet 2:271–278

    Google Scholar 

  • Gschwend AR, Weingartner LA, Moore RC, Ming R (2012) The sex-specific region of sex chromosomes in animals and plants. Chromosom Res 20:57–69

    Article  CAS  Google Scholar 

  • Harkess A et al. (2017) The asparagus genome sheds light on the origin and evolution of a young y chromosome. Nat Commun 8

  • Iizuka M, Janick J (1962) Cytogenetic analysis of sex determination in Spinacia oleracea. Genetics 47:1225

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iizuka M, Janick J (1963) Sex chromosome translocations in Spinacia oleracea. Genetics 48:273

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ito M (2000) Characterization of spinach chromosomes by condensation patterns and physical mapping of 5s and 45s rDNAs by FISH. Sci Technol 125:59–62

    CAS  Google Scholar 

  • Janick J, Stevenson EC (1955a) The effects of polyploidy on sex expression in spinach. J Hered 46:151–156

    Article  Google Scholar 

  • Janick J, Stevenson EC (1955b) Genetics of the monoecious character in spinach. Genetics 40:429

    PubMed  PubMed Central  CAS  Google Scholar 

  • Janick J, Mahoney DL, Pfahler PL (1959) The trisomics of Spinacia oleracea. J Hered 50:47–50

    Article  Google Scholar 

  • Khattak JZK, Torp AM, Andersen SB (2006) A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica 148:311–318

    Article  CAS  Google Scholar 

  • Kudoh T et al (2018) Molecular insights into the non-recombining nature of the spinach male-determining region. Mol Genet Genomics 293:557–568

    Article  PubMed  CAS  Google Scholar 

  • Lan T et al (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114:175–177

    Article  PubMed  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd DG (1980) The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 123–134

  • Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Bot Rev 43:177–216

    Article  Google Scholar 

  • Mahoney DL, Janick J, Stevenson EC (1959) Sex determination in diploid–triploid crosses of Spinacia oleracea. Am J Bot 372–375

  • Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Wang JP, Moore PH, Paterson AH (2007) Sex chromosomes in flowering plants. Am J Bot 94:141–150

    Article  PubMed  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Yonaha I, Niikura S, Yamazaki S, Mikami T (2008) Monoecy and gynomonoecy in Spinacia oleracea L.: morphological and genetic analyses. Sci Hortic 118:266–269

    Article  Google Scholar 

  • Onodera Y et al (2011) Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. Plant Cell Rep 30:965–971

    Article  PubMed  CAS  Google Scholar 

  • Ramanna MS (1976) Are there heteromorphic sex chromosomes in spinach (Spinacia oleracea L.)? Euphytica 25:277–284

    Article  Google Scholar 

  • Slancarova V et al (2013) Evolution of sex determination systems with heterogametic males and females in silene. Evolution 67:3669–3677

    Article  PubMed  Google Scholar 

  • Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: Are we there yet? Ann Bot 109:531–543

    Article  PubMed  Google Scholar 

  • Stanke M et al (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevenson EC (1954) A genetic study of the heterogametic nature of the staminate plant in spinach (Spinacia oleracea L.). Proc Am Soc Hortic Sci 63:444–446

    Google Scholar 

  • Vanburen R et al (2015) Origin and domestication of papaya Y h chromosome. Genome Res 524–533. https://doi.org/10.1101/gr.183905.114.9

  • Wang J et al (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci 109:13710–13715

    Article  PubMed  Google Scholar 

  • Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform 10:80

    Article  CAS  Google Scholar 

  • Younis RAA, Ismail OM, Soliman SS (2008) Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. Res J Agric Biol Sci 4:278–284

    CAS  Google Scholar 

  • Zhang H-X, Zeevaart JAD (1999) An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep 18:640–645

    Article  CAS  Google Scholar 

  • Zhang J, Boualem A, Bendahmane A, Ming R (2014) Genomics of sex determination. Curr Opin Plant Biol 18:110–116

    Article  PubMed  CAS  Google Scholar 

  • Zluvova J, Janousek B, Negrutiu I, Vyskot B (2005) Comparison of the X and Y chromosome organization in Silene latifolia. Genetics 170:1431–1434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. David Brenner at the USDA-GRIN in Ames, Iowa, for facilitating access to the spinach germplasm collection, and Christina Fliege and Dr. Matt Hudson for allowing access to growth chambers. We appreciate Lixian Huang’s work to construct DNA sequencing libraries. This work was supported by the grant 2015N20002-1 from the Department of Science and Technology of Fujian Province to RM; National Science Foundation (NSF) Plant Genome Research Program Awards DBI-0922545 and DBI-1546890 to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Michael J. Havey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadlington, W.H., Ming, R. Development of an X-specific marker and identification of YY individuals in spinach. Theor Appl Genet 131, 1987–1994 (2018). https://doi.org/10.1007/s00122-018-3127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3127-1

Navigation