SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26

  • Jianhui Wu
  • Qingdong Zeng
  • Qilin Wang
  • Shengjie Liu
  • Shizhou Yu
  • Jingmei Mu
  • Shuo Huang
  • Hanan Sela
  • Assaf Distelfeld
  • Lili Huang
  • Dejun Han
  • Zhensheng Kang
Original Article

Abstract

Key message

NGS-assisted super pooling emerging as powerful tool to accelerate gene mapping and haplotype association analysis within target region uncovering specific linkage SNPs or alleles for marker-assisted gene pyramiding.

Abstract

Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (> 30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.

Notes

Acknowledgements

The authors are grateful to Prof. R.A. McIntosh, Plant Breeding Institute, University of Sydney, for critical review of this manuscript; Prof. Peidu Chen and Prof. Aizhong Cao, Cytogenetics Institute, Nanjing Agricultural University, for providing Yr26 germplasms and genetic populations. This study was financially supported by International S&T Cooperation Program of China (2015DFG32340), National Natural Science Foundation of China (31371924), the National Key Research and Development Program of China (Grant no. 2016YFE0108600), the earmarked funds for Modern Agro-industry Technology Research System (No. CARS-3-1-11) and National Natural Science Foundation for Young Scientists of China (Grant 31701421).

Author contribution statement

JHW designed and conducted the experiments, analyzed the data, and wrote the manuscript. QDZ analyzed the data, prepared the figures for the manuscript and contributed to writing the RNA-Seq sections; QLW participated in creating the genetic populations and analyzed the SNP array data. SJL, JMM and SH participated in greenhouse and field experiments and contributed to the genotyping experiment. SZY assisted in analyzing the data and prepared the figures for the manuscript. HS and AD analyzed the data with the wild emmer genome. LLH participated in revising the manuscript. DJH and ZSK conceived and directed the project and revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

Ethical standard

I declare on behalf of my co-authors that the work described is original, previously unpublished research, and not under consideration for publication elsewhere. The experiments in this study comply with the current laws of China.

Supplementary material

122_2018_3092_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 10 kb)
122_2018_3092_MOESM2_ESM.xlsx (225 kb)
Supplementary material 2 (XLSX 224 kb)
122_2018_3092_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 10 kb)
122_2018_3092_MOESM4_ESM.xlsx (9 kb)
Supplementary material 4 (XLSX 9 kb)
122_2018_3092_MOESM5_ESM.xlsx (127 kb)
Supplementary material 5 (XLSX 126 kb)
122_2018_3092_MOESM6_ESM.xlsx (109 kb)
Supplementary material 6 (XLSX 109 kb)
122_2018_3092_MOESM7_ESM.xlsx (18 kb)
Supplementary material 7 (XLSX 18 kb)
122_2018_3092_MOESM8_ESM.xlsx (122 kb)
Supplementary material 8 (XLSX 121 kb)
122_2018_3092_MOESM9_ESM.xlsx (35 kb)
Supplementary material 9 (XLSX 34 kb)
122_2018_3092_MOESM10_ESM.xlsx (94 kb)
Supplementary material 10 (XLSX 93 kb)
122_2018_3092_MOESM11_ESM.pptx (2.5 mb)
Supplementary material 11 (PPTX 2509 kb)
122_2018_3092_MOESM12_ESM.xlsx (54 kb)
Supplementary material 12 (XLSX 54 kb)

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  2. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099CrossRefPubMedGoogle Scholar
  3. Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M et al (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11:279–295CrossRefPubMedGoogle Scholar
  4. Avni R, Nave M, Barad O, Baruch K, Twardziok SO et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97CrossRefPubMedGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown JK (2015) Durable resistance of crops to disease: a Darwinian perspective. Annu Rev Phytopathol 53:513–539CrossRefPubMedGoogle Scholar
  8. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao A, Xing L, Wang X, Yang X, Wang W et al (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chapman JA, Mascher M, Buluc AN, Barry K, Georganas E et al (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 16:26CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  12. Chen X (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 04:608–627CrossRefGoogle Scholar
  13. Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326CrossRefGoogle Scholar
  14. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL et al (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101CrossRefGoogle Scholar
  15. Cheng P, Xu LS, Wang MN, See DR, Chen XM (2014) Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet 127:2267–2277CrossRefPubMedGoogle Scholar
  16. Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G et al (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896CrossRefPubMedPubMedCentralGoogle Scholar
  17. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  18. Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:1–13CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194CrossRefPubMedGoogle Scholar
  21. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360CrossRefPubMedPubMedCentralGoogle Scholar
  22. Garcia V, Bres C, Just D, Fernandez L, Tai FW et al (2016) Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 11:2401–2418CrossRefPubMedGoogle Scholar
  23. Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6568CrossRefPubMedPubMedCentralGoogle Scholar
  24. Han D, Wang Q, Zhang L, Wei G, Zeng Q et al (2010) Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China and the Middle and Lower Reaches of Changjiang River epidemic area. Sci Agric Sin 43:2889–2896Google Scholar
  25. Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH et al (2015) Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis 99:754–760CrossRefGoogle Scholar
  26. Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369CrossRefPubMedGoogle Scholar
  27. Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF et al (2014) Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 127:843–853CrossRefPubMedGoogle Scholar
  28. Jia J, Zhao S, Kong X, Li Y, Zhao G et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95CrossRefPubMedGoogle Scholar
  29. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  30. Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytol 212:320–332CrossRefPubMedGoogle Scholar
  31. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  32. Li S, Chou HH (2004) LUCY2: an interactive DNA sequence quality trimming and vector removal tool. Bioinformatics 20:2865–2866CrossRefPubMedGoogle Scholar
  33. Li ZQ, Zeng SM (eds) (2002) Wheat rust in China. China Agriculture Press, BeijingGoogle Scholar
  34. Li GQ, Li ZF, Yang WY, Zhang Y, He ZH et al (2006) Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet 112:1434–1440CrossRefPubMedGoogle Scholar
  35. Li Q, Ma D, Li Q, Fan Y, Shen X et al (2016) Genetic analysis and molecular mapping of a stripe rust resistance gene in Chinese wheat differential Guinong 22. J Phytopathol 164:476–484CrossRefGoogle Scholar
  36. Li B, Xu Q, Yang Y, Wang Q, Zeng Q et al (2017) Stripe rust resistance and genes in Chongqing wheat cultivars and lines. Sci Agric Sin 50:413–425Google Scholar
  37. Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287CrossRefPubMedGoogle Scholar
  38. Lin F, Chen XM (2008) Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 116:797–806CrossRefPubMedGoogle Scholar
  39. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin No. 1788, p 74Google Scholar
  40. Ling HQ, Zhao S, Liu D, Wang J, Sun H et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90CrossRefPubMedGoogle Scholar
  41. Liu S, Yeh C, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu W, Frick M, Huel R, Nykiforuk CL, Wang X et al (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755CrossRefPubMedGoogle Scholar
  43. Liu B, Liu T, Zhang Z, Jia Q, Wang B et al (2017) Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin.  https://doi.org/10.13926/j.cnki.apps.000071 Google Scholar
  44. Ma J, Zhou R, Dong Y, Wang L, Wang X et al (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226CrossRefGoogle Scholar
  45. McIntosh RA, Lagudah ES (2000) Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust. Plant Breeding 119:81–83CrossRefGoogle Scholar
  46. McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R et al. (2016) Catalogue of gene symbols for wheat: 2016 Supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf. Accessed 20 Sept 2017
  47. McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R et al. (2017) Catalogue of gene symbols for wheat: 2017 Supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. Accessed 20 Sept 2017
  48. McIntosh RA, Mu J, Han D, Kang Z (2018) Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J.  https://doi.org/10.1016/j.cj.2018.02.001 Google Scholar
  49. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedPubMedCentralGoogle Scholar
  50. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498CrossRefPubMedGoogle Scholar
  51. Nagy ED, Eder C, Molnár-Láng M, Lelley T (2003) Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat-rye translocation. Euphytica 132:243–249CrossRefGoogle Scholar
  52. Peng JH, Fahima T, Der Röder MS, Li YC, Dahan A et al (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872CrossRefGoogle Scholar
  53. Periyannan S, Milne RJ, Figueroa M, Lagudah ES, Dodds PN (2017) An overview of genetic rust resistance: from broad to specific mechanisms. PLoS Pathog 13:e1006380CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  55. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S et al (2015a) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624CrossRefPubMedGoogle Scholar
  56. Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015b) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rasheed A, Hao Y, Xia X, Khan A, Xu Y et al (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol plant 10:1047–1064CrossRefPubMedGoogle Scholar
  58. Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Simková H, Safář J, Bellec A, Vautrin S, Frenkel Z, Cattonaro F, Magni F, Scalabrin S, Martis MM, Mayer KF, Korol A, Bergès H, Doležel J, Feuillet C (2013) A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol 14(6):R64CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749–763CrossRefPubMedGoogle Scholar
  60. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM et al (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194CrossRefPubMedGoogle Scholar
  61. Song WN, Ko L, Henry RJ (1994) Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet 89:509–513Google Scholar
  62. St. Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268CrossRefPubMedGoogle Scholar
  63. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655CrossRefPubMedGoogle Scholar
  64. Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II. Academic Press, New York, pp 61–101Google Scholar
  65. Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A et al (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95:622–628CrossRefGoogle Scholar
  66. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefPubMedGoogle Scholar
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular revolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thind AK, Wicker T, Simkova H, Fossati D, Moullet O et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796CrossRefPubMedGoogle Scholar
  69. Trick M, Adamski N, Mugford SG, Jiang C, Febrer M et al (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14CrossRefPubMedPubMedCentralGoogle Scholar
  70. Uauy C (2017) Wheat genomics comes of age. Curr Opin Plant Biol 36:142–148CrossRefPubMedGoogle Scholar
  71. Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51:435–454CrossRefPubMedGoogle Scholar
  72. United Nations Department Of Economic And Social Affairs PD (2015) World population prospects: the 2015 revision. Working paper no. ESA/P/WP.241. https://esa.un.org/unpd/wpp/. Accessed 27 Feb 2017 (WWW document)
  73. Uricaru R, Rizk G, Lacroix V, Quillery E, Plantard O et al (2015) Reference-free detection of isolated SNPs. Nucleic Acids Res 43:e11CrossRefPubMedGoogle Scholar
  74. Van Ooijen JW (2006) JoinMap4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  75. van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A et al (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J 11:809–817CrossRefPubMedGoogle Scholar
  76. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883CrossRefPubMedPubMedCentralGoogle Scholar
  77. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  78. Wang L, Ma J, Zhou R, Wang X, Jia J (2002) Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI178383 (Triticum aestivum L.). Euphytica 124:71–73CrossRefGoogle Scholar
  79. Wang C, Zhang Y, Han D, Kang Z, Li G et al (2008) SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359–366CrossRefGoogle Scholar
  80. Wang S, Wong D, Forrest K, Allen A, Chao S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang Y, Xie J, Zhang H, Guo B, Ning S et al (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201CrossRefPubMedGoogle Scholar
  82. Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphtica 179:129–141CrossRefGoogle Scholar
  83. William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159CrossRefPubMedGoogle Scholar
  84. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wu JH, Wang QL, Chen XM, Wang MJ, Mu JM et al (2016) Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Can J Plant Pathol 38:317–324CrossRefGoogle Scholar
  86. Wu J, Liu S, Wang Q, Zeng Q, Mu J et al (2018a) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131:43–58CrossRefPubMedGoogle Scholar
  87. Wu J, Wang Q, Xu L, Chen X, Li B et al (2018b) Combining SNP genotyping array with bulked segregant analysis to map a gene controlling adult-plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology 108:103–113CrossRefPubMedGoogle Scholar
  88. Xu Y, Li P, Zou C, Lu Y, Xie C et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666CrossRefPubMedGoogle Scholar
  89. Zeng Q, Han D, Wang Q, Yuan F, Wu J et al (2014) Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 196:271–284CrossRefGoogle Scholar
  90. Zhang X, Han D, Zeng Q, Duan Y, Yuan F et al (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS ONE 8:e57885CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang H, Zhang L, Wang C, Wang Y, Zhou X et al (2016) Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. Theor Appl Genet 129:369–376CrossRefPubMedGoogle Scholar
  92. Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianhui Wu
    • 1
  • Qingdong Zeng
    • 1
  • Qilin Wang
    • 1
  • Shengjie Liu
    • 1
  • Shizhou Yu
    • 1
  • Jingmei Mu
    • 1
  • Shuo Huang
    • 1
  • Hanan Sela
    • 2
  • Assaf Distelfeld
    • 3
    • 4
    • 5
  • Lili Huang
    • 1
  • Dejun Han
    • 1
  • Zhensheng Kang
    • 1
  1. 1.State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityXianyangPeople’s Republic of China
  2. 2.The Institute for Cereal Crops ImprovementTel-Aviv UniversityTel AvivIsrael
  3. 3.School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
  4. 4.NRGene Ltd.Ness ZionaIsrael
  5. 5.Helmholtz Zentrum München, Plant Genome and Systems BiologyNeuherbergGermany

Personalised recommendations